1
|
Norris JL, Rogers LO, Young G, Pytko KG, Dannenberg RL, Perreault S, Kaushik V, Antony E, Hedglin M. PCNA encircling primer/template junctions is eliminated by exchange of RPA for Rad51: Implications for the interplay between human DNA damage tolerance pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645792. [PMID: 40236028 PMCID: PMC11996364 DOI: 10.1101/2025.03.27.645792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The DNA genome is constantly exposed to agents, such as ultraviolet radiation (UVR), that can alter or eliminate its coding properties through covalent modifications of the template bases. Many of these damaging modifications (i.e., lesions) persist into S-phase of the cell cycle where they may stall the canonical DNA replication machinery. In humans, these stalling events are circumvented by one of at least three interconnected DNA damage tolerance (DDT) pathways; translesion DNA synthesis (TLS), Template Switching (TS), and Homology-dependent Recombination (HDR). Currently, the functional interplay between these pathways is unclear, leaving wide gaps in our fundamental understanding of human DDT. To gain insights, we focus on the activation mechanisms of the DDT pathways. PCNA sliding clamps encircling primer/template (P/T) junctions of stalled replication sites are central to the activation of both TLS and TS whereas exchange of RPA for Rad51 filaments on the single strand DNA (ssDNA) sequences of stalled replication sites is central to HDR activation. Utilizing direct, ensemble FRET approaches developed by our lab, we independently monitor and directly compare PCNA occupancy and RPA/Rad51 exchange at P/T junctions under a variety of conditions that mimic in vivo scenarios. Collectively, the results reveal that assembly of stable Rad51 filaments at P/T junctions via RPA/Rad51 exchange causes complete and irreversible unloading of the resident PCNA, both in the presence and absence of an abundant PCNA-binding protein complex. Further investigations decipher the mechanism of RPA/Rad51 exchange-dependent unloading of PCNA. Collectively, these studies provide critical insights into the interplay between human DDT pathways and direction for future studies.
Collapse
|
2
|
Wang F, He Q, Yao NY, O'Donnell ME, Li H. The human ATAD5 has evolved unique structural elements to function exclusively as a PCNA unloader. Nat Struct Mol Biol 2024; 31:1680-1691. [PMID: 38871854 PMCID: PMC11563871 DOI: 10.1038/s41594-024-01332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Humans have three different proliferating cell nuclear antigen (PCNA) clamp-loading complexes: RFC and CTF18-RFC load PCNA onto DNA, but ATAD5-RFC can only unload PCNA from DNA. The underlying structural basis of ATAD5-RFC unloading is unknown. We show here that ATAD5 has two unique locking loops that appear to tie the complex into a rigid structure, and together with a domain that plugs the DNA-binding chamber, prevent conformation changes required for DNA binding, likely explaining why ATAD5-RFC is exclusively a PCNA unloader. These features are conserved in the yeast PCNA unloader Elg1-RFC. We observe intermediates in which PCNA bound to ATAD5-RFC exists as a closed planar ring, a cracked spiral or a gapped spiral. Surprisingly, ATAD5-RFC can open a PCNA gap between PCNA protomers 2 and 3, different from the PCNA protomers 1 and 3 gap observed in all previously characterized clamp loaders.
Collapse
Affiliation(s)
- Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
3
|
Norris JL, Hedglin M. Direct, ensemble FRET approaches to monitor transient state kinetics of human DNA polymerase δ holoenzyme assembly and initiation of DNA synthesis. Methods Enzymol 2024; 705:271-309. [PMID: 39389667 PMCID: PMC11998599 DOI: 10.1016/bs.mie.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In humans, DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand replication, the initiation of leading strand DNA replication as well as most of the major DNA damage repair pathways. In each of these contexts, pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process that involves the PCNA clamp loader, replication factor C and, depending on the DNA synthesis pathway, the major single strand DNA-binding protein complex, replication protein A (RPA). In a recent report from our laboratory, we designed and utilized direct, ensemble Förster Resonance Energy Transfer approaches to monitor the transient state kinetics of pol δ holoenzyme assembly and initiation of DNA synthesis on P/T junctions engaged by RPA. In this chapter, we detail the original approaches and discuss adaptations that can be utilized to monitor fast kinetic reactions in the millisecond (ms) timescale. All approaches described in this chapter utilize a commercially-available fluorescence spectrophotometer, can be readily evolved for alternative DNA polymerases and P/T DNA substrates, and permit incorporation of protein posttranslational modifications, accessory factors, DNA covalent modifications, accessory factors, enzymes, etc. Hence, these approaches are widely accessible and broadly applicable for characterizing DNA polymerase holoenzyme assembly and initiation of DNA synthesis during any PCNA-dependent DNA synthesis pathway.
Collapse
Affiliation(s)
- Jessica L Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
4
|
Norris JL, Rogers LO, Pytko KG, Dannenberg RL, Perreault S, Kaushik V, Kuppa S, Antony E, Hedglin M. Interplay of macromolecular interactions during assembly of human DNA polymerase δ holoenzymes and initiation of DNA synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539896. [PMID: 37215012 PMCID: PMC10197535 DOI: 10.1101/2023.05.09.539896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In humans, DNA polymerase δ (Pol δ) holoenzymes, comprised of Pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand DNA replication, initiation of leading strand DNA replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a coordinated process involving the major single strand DNA-binding protein complex, replication protein A (RPA), the processivity sliding clamp loader, replication factor C (RFC), PCNA, and Pol δ. Each of these factors interact uniquely with a P/T junction and most directly engage one another. Currently, the interplay between these macromolecular interactions is largely unknown. In the present study, novel Förster Resonance Energy Transfer (FRET) assays reveal that dynamic interactions of RPA with a P/T junction during assembly of a Pol δ holoenzyme and initiation of DNA synthesis maintain RPA at a P/T junction and accommodate RFC, PCNA, and Pol δ, maximizing the efficiency of each process. Collectively, these studies significantly advance our understanding of human DNA replication and DNA repair.
Collapse
Affiliation(s)
- Jessica L. Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Lindsey O. Rogers
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kara G. Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Samuel Perreault
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Vikas Kaushik
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Sahiti Kuppa
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Edwin Antony
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
5
|
Mulye M, Singh MI, Jain V. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps. Genes (Basel) 2022; 13:2058. [PMID: 36360296 PMCID: PMC9690074 DOI: 10.3390/genes13112058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Sliding clamps play a pivotal role in the process of replication by increasing the processivity of the replicative polymerase. They also serve as an interacting platform for a plethora of other proteins, which have an important role in other DNA metabolic processes, including DNA repair. In other words, clamps have evolved, as has been correctly referred to, into a mobile "tool-belt" on the DNA, and provide a platform for several proteins that are involved in maintaining genome integrity. Because of the central role played by the sliding clamp in various processes, its study becomes essential and relevant in understanding these processes and exploring the protein as an important drug target. In this review, we provide an updated report on the functioning, interactions, and moonlighting roles of the sliding clamps in various organisms and its utilization as a drug target.
Collapse
Affiliation(s)
- Meenakshi Mulye
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| | | | - Vikas Jain
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| |
Collapse
|
6
|
Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Proc Natl Acad Sci U S A 2020; 117:23571-23580. [PMID: 32907938 DOI: 10.1073/pnas.2007437117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5'-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a "limited change/induced fit" mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.
Collapse
|
7
|
Li H, Doruker P, Hu G, Bahar I. Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding. Biophys J 2020; 118:1782-1794. [PMID: 32130874 DOI: 10.1016/j.bpj.2020.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Toroidal proteins serve as molecular machines and play crucial roles in biological processes such as DNA replication and RNA transcription. Despite progress in the structural characterization of several toroidal proteins, we still lack a mechanistic understanding of the significance of their architecture, oligomerization states, and intermolecular interactions in defining their biological function. In this work, we analyze the collective dynamics of toroidal proteins with different oligomerization states, namely, dimeric and trimeric DNA sliding clamps, nucleocapsid proteins (4-, 5-, and 6-mers) and Trp RNA-binding attenuation proteins (11- and 12-mers). We observe common global modes, among which cooperative rolling stands out as a mechanism enabling DNA processivity, and clamshell motions as those underlying the opening/closure of the sliding clamps. Alterations in global dynamics due to complexation with DNA or the clamp loader are shown to assist in enhancing motions to enable robust function. The analysis provides new insights into the differentiation and enhancement of functional motions upon intersubunit and intermolecular interactions.
Collapse
Affiliation(s)
- Hongchun Li
- Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guang Hu
- Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|