1
|
Liu L, You H, Ye L, Ou Q, Zhao Y, Wang J, Niu J. Unveiling the Catalytic Roles of DsBBS1 and DsBBS2 in the Bibenzyl Biosynthesis of Dendrobium sinense. Molecules 2024; 29:3682. [PMID: 39125085 PMCID: PMC11314366 DOI: 10.3390/molecules29153682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Dendrobium sinense, an endemic medicinal herb in Hainan Island, is rich in bibenzyl compounds. However, few studies have explored the molecular mechanisms of bibenzyl biosynthesis. This study presents a comprehensive analysis of DsBBS1 and DsBBS2 function in D. sinense. A molecular docking simulation revealed high-resolution three-dimensional structural models with minor domain orientation differences. Expression analyses of DsBBS1 and DsBBS2 across various tissues indicated a consistent pattern, with the highest expression being found in the roots, implying that they play a pivotal role in bibenzyl biosynthesis. Protein expression studies identified optimal conditions for DsBBS2-HisTag expression and purification, resulting in a soluble protein with a molecular weight of approximately 45 kDa. Enzyme activity assays confirmed DsBBS2's capacity to synthesize resveratrol, exhibiting higher Vmax and lower Km values than DsBBS1. Functional analyses in transgenic Arabidopsis demonstrated that both DsBBS1 and DsBBS2 could complement the Atchs mutant phenotype. The total flavonoid content in the DsBBS1 and DsBBS2 transgenic lines was restored to wild-type levels, while the total bibenzyl content increased. DsBBS1 and DsBBS2 are capable of catalyzing both bibenzyl and flavonoid biosynthesis in Arabidopsis. This study provides valuable insights into the molecular mechanisms underlying the biosynthesis of bibenzyl compounds in D. sinense.
Collapse
Affiliation(s)
| | | | | | | | | | - Jia Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants—Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (L.L.); (H.Y.); (L.Y.); (Q.O.); (Y.Z.)
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants—Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (L.L.); (H.Y.); (L.Y.); (Q.O.); (Y.Z.)
| |
Collapse
|
2
|
Thole JF, Waudby CA, Pielak GJ. Disordered proteins mitigate the temperature dependence of site-specific binding free energies. J Biol Chem 2023; 299:102984. [PMID: 36739945 PMCID: PMC10027511 DOI: 10.1016/j.jbc.2023.102984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Biophysical characterization of protein-protein interactions involving disordered proteins is challenging. A common simplification is to measure the thermodynamics and kinetics of disordered site binding using peptides containing only the minimum residues necessary. We should not assume, however, that these few residues tell the whole story. Son of sevenless, a multidomain signaling protein from Drosophila melanogaster, is critical to the mitogen-activated protein kinase pathway, passing an external signal to Ras, which leads to cellular responses. The disordered 55 kDa C-terminal domain of Son of sevenless is an autoinhibitor that blocks guanidine exchange factor activity. Activation requires another protein, Downstream of receptor kinase (Drk), which contains two Src homology 3 domains. Here, we utilized NMR spectroscopy and isothermal titration calorimetry to quantify the thermodynamics and kinetics of the N-terminal Src homology 3 domain binding to the strongest sites incorporated into the flanking disordered sequences. Comparing these results to those for isolated peptides provides information about how the larger domain affects binding. The affinities of sites on the disordered domain are like those of the peptides at low temperatures but less sensitive to temperature. Our results, combined with observations showing that intrinsically disordered proteins become more compact with increasing temperature, suggest a mechanism for this effect.
Collapse
Affiliation(s)
- Joseph F Thole
- Department of Chemistry, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Molecular and Cellular Biophysics Program, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Gary J Pielak
- Department of Chemistry, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Molecular and Cellular Biophysics Program, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry & Biophysics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Cancer Center, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Integrative Program for Biological and Genome Sciences, UNC - Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Nyenhuis DA, Rajasekaran R, Watanabe S, Strub MP, Khan M, Powell M, Carter CA, Tjandra N. HECT domain interaction with ubiquitin binding sites on Tsg101-UEV controls HIV-1 egress, maturation, and infectivity. J Biol Chem 2023; 299:102901. [PMID: 36642186 PMCID: PMC9944984 DOI: 10.1016/j.jbc.2023.102901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processivity, specificity, or regulation. Here, we report the use of paramagnetic solution NMR to characterize a complex formed between the isolated HECT domain of neural precursor cell-expressed developmentally downregulated 4-1 and the ubiquitin E2 variant (UEV) domain of tumor susceptibility gene 101 (Tsg101). Both proteins are involved in endosomal trafficking, a process driven by Ub signaling, and are hijacked by viral pathogens for particle assembly; however, a direct interaction between them has not been described, and the mechanism by which the HECT E3 ligase contributes to pathogen formation has not been elucidated. We provide evidence for their association, consisting of multiple sites on the neural precursor cell-expressed developmentally downregulated 4-1 HECT domain and elements of the Tsg101 UEV domain involved in noncovalent ubiquitin binding. Furthermore, we show using an established reporter assay that HECT residues perturbed by UEV proximity define determinants of viral maturation and infectivity. These results suggest the UEV interaction is a determinant of HECT activity in Ub signaling. As the endosomal trafficking pathway is hijacked by several human pathogens for egress, the HECT-UEV interaction could represent a potential novel target for therapeutic intervention.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rohith Rajasekaran
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Susan Watanabe
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahfuz Khan
- Department of Microbiology & Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Michael Powell
- Department of Microbiology & Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Carol A. Carter
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA,For correspondence: Nico Tjandra; Carol A. Carter
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Di Savino A, Foerster JM, Ullmann GM, Ubbink M. The Charge Distribution on a Protein Surface Determines Whether Productive or Futile Encounter Complexes Are Formed. Biochemistry 2021; 60:747-755. [PMID: 33646750 PMCID: PMC8041253 DOI: 10.1021/acs.biochem.1c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Protein complex formation
depends strongly on electrostatic interactions.
The distribution of charges on the surface of redox proteins is often
optimized by evolution to guide recognition and binding. To test the
degree to which the electrostatic interactions between cytochrome c peroxidase (CcP) and cytochrome c (Cc)
are optimized, we produced five CcP variants, each with a different
charge distribution on the surface. Monte Carlo simulations show that
the addition of negative charges attracts Cc to the new patches, and
the neutralization of the charges in the regular, stereospecific binding
site for Cc abolishes the electrostatic interactions in that region
entirely. For CcP variants with the charges in the regular binding
site intact, additional negative patches slightly enhance productive
complex formation, despite disrupting the optimized charge distribution.
Removal of the charges in the regular binding site results in a dramatic
decrease in the complex formation rate, even in the presence of highly
negative patches elsewhere on the surface. We conclude that additional
charge patches can result in either productive or futile encounter
complexes, depending on whether negative residues are located also
in the regular binding site.
Collapse
Affiliation(s)
- Antonella Di Savino
- Leiden University, Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johannes M Foerster
- University of Bayreuth, Computational Biochemistry, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - G Matthias Ullmann
- University of Bayreuth, Computational Biochemistry, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Marcellus Ubbink
- Leiden University, Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
5
|
Di Savino A, Foerster JM, La Haye T, Blok A, Timmer M, Ullmann GM, Ubbink M. Efficient Encounter Complex Formation and Electron Transfer to Cytochrome c Peroxidase with an Additional, Distant Electrostatic Binding Site. Angew Chem Int Ed Engl 2020; 59:23239-23243. [PMID: 32827196 PMCID: PMC7756542 DOI: 10.1002/anie.202010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Electrostatic interactions can strongly increase the efficiency of protein complex formation. The charge distribution in redox proteins is often optimized to steer a redox partner to the electron transfer active binding site. To test whether the optimized distribution is more important than the strength of the electrostatic interactions, an additional negative patch was introduced on the surface of cytochrome c peroxidase, away from the stereospecific binding site, and its effect on the encounter complex as well as the rate of complex formation was determined. Monte Carlo simulations and paramagnetic relaxation enhancement NMR experiments indicate that the partner, cytochrome c, interacts with the new patch. Unexpectedly, the rate of the active complex formation was not reduced, but rather slightly increased. The findings support the idea that for efficient protein complex formation the strength of the electrostatic interaction is more critical than an optimized charge distribution.
Collapse
Affiliation(s)
- Antonella Di Savino
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
| | - Johannes M. Foerster
- University of BayreuthComputational BiochemistryUniversitätsstraße 30, NW I95447BayreuthGermany
| | - Thijmen La Haye
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
- Present address: University of DelftTNW Applied SciencesVan der Maasweg 92629 HZDelftThe Netherlands
| | - Anneloes Blok
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
| | - Monika Timmer
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
| | - G. Matthias Ullmann
- University of BayreuthComputational BiochemistryUniversitätsstraße 30, NW I95447BayreuthGermany
| | - Marcellus Ubbink
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
| |
Collapse
|
6
|
Di Savino A, Foerster JM, La Haye T, Blok A, Timmer M, Ullmann GM, Ubbink M. Efficient Encounter Complex Formation and Electron Transfer to Cytochrome
c
Peroxidase with an Additional, Distant Electrostatic Binding Site. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonella Di Savino
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
| | - Johannes M. Foerster
- University of Bayreuth Computational Biochemistry Universitätsstraße 30, NW I 95447 Bayreuth Germany
| | - Thijmen La Haye
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
- Present address: University of Delft TNW Applied Sciences Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Anneloes Blok
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
| | - Monika Timmer
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
| | - G. Matthias Ullmann
- University of Bayreuth Computational Biochemistry Universitätsstraße 30, NW I 95447 Bayreuth Germany
| | - Marcellus Ubbink
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
| |
Collapse
|
7
|
Competing Ligands Can Both Obstruct and Enhance Protein-Complex Formation. Biophys J 2019; 117:1552-1553. [PMID: 31606122 DOI: 10.1016/j.bpj.2019.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022] Open
|
8
|
Kale S, Strickland M, Peterkofsky A, Liu J, Tjandra N. Model of a Kinetically Driven Crosstalk between Paralogous Protein Encounter Complexes. Biophys J 2019; 117:1655-1665. [PMID: 31623885 DOI: 10.1016/j.bpj.2019.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022] Open
Abstract
Proteins interact with one another across a broad spectrum of affinities. Our understanding of the low end of this spectrum, as characterized by millimolar dissociation constants, relies on a handful of cases in which weak encounters have experimentally been identified. These weak interactions away from the specific target binding site can lead toward a higher-affinity complex. Recently, we detected weak encounters between two paralogous phosphotransferase pathways of Escherichia coli, which regulate various metabolic processes and stress responses. In addition to encounters that are known to occur between cognate proteins, i.e., those that can exchange phosphate groups with each other, surprisingly, encounters involving noncognates were also observed. It is not clear whether these "futile" encounters have a cooperative or competitive role. Using agent-based simulations, we find that the encounter complexes can be cooperative or competitive so as to increase or lower the effective binding affinity of the specific complex under different circumstances. This finding invites further questions into how organisms might exploit such low affinities to connect their signaling components.
Collapse
Affiliation(s)
- Seyit Kale
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland; National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland.
| | - Madeleine Strickland
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Alan Peterkofsky
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jian Liu
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, John Hopkins University, Baltimore, Maryland
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland.
| |
Collapse
|