1
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Raghavan AR, May K, Subramanian VV, Blitzblau HG, Patel NJ, Houseley J, Hochwagen A. Distinct chromatin regulators downmodulate meiotic axis formation and DNA break induction at chromosome ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640173. [PMID: 40093131 PMCID: PMC11908166 DOI: 10.1101/2025.02.27.640173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In many organisms, meiotic crossover recombination is suppressed near the extreme ends of chromosomes. Here, we identified two chromatin modifiers, the histone methyltransferase Dot1 and the Sir silencing complex, as regulators of this process in Saccharomyces cerevisiae. We show that the recombination-promoting axis proteins Red1 and Hop1, but not the axis-associated cohesin Rec8, are significantly reduced within 20 kb of telomeres compared to the chromosome interior. Dot1, which preferentially methylates histones in the chromosome interior, is required for this pattern by directing Red1 binding toward the chromosome interior. In parallel, the Sir complex suppresses the induction of meiotic DNA double-strand breaks (DSBs) at chromosome ends. Sir-dependent DSB suppression is independent of axis deposition and occurs in a chromosome end-specific manner that mirrors the spreading and transcriptional silencing activity of the complex, suggesting that the Sir complex suppresses DSB formation by limiting the openness of promoters, the preferred sites of meiotic DSB formation. We conclude that multiple chromatin-based mechanisms collaborate to achieve a robust reduction of meiotic recombination near chromosome ends.
Collapse
Affiliation(s)
| | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Vijayalakshmi V Subramanian
- Department of Biology, New York University, New York, USA
- Department of Biology, IISER Tirupati, Tirupati, India
| | | | - Neem J Patel
- Department of Biology, New York University, New York, USA
| | | | | |
Collapse
|
3
|
Sauty SM, Fisher A, Dolson A, Yankulov K. Mutations in the DNA processivity factor POL30 predispose the FLO11 locus to epigenetic instability in S. cerevisiae. J Cell Sci 2024; 137:jcs262006. [PMID: 39552290 PMCID: PMC11827858 DOI: 10.1242/jcs.262006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
The FLO genes in Saccharomyces cerevisiae are repressed by heterochromatin formation, involving histone deacetylases, transcription factors and non-coding RNAs. Here, we report that mutations in the processivity factor POL30 (PCNA) that show transient derepression at the subtelomeres and the mating-type loci do not derepress FLO loci. However, deletions of the replisome stability factors RRM3 and TOF1 along with pol30 mutations induced flocculation phenotypes. The phenotypes correlated with increased expression of reporter proteins driven by the FLO11 promoter, the frequency of silent to active conversions of FLO11, and reduced expression of the regulatory long non-coding RNAs ICR1 and PWR1. Alterations in the local replication landscape of FLO11 indicate a link between defects in the fork protection complex and the stability of gene silencing. Analyses of these mutants at the subtelomeres and the HMLα locus showed a similar derepression phenotype and suggest transient instability of both active and silent states of FLO11. We conclude that RRM3 and TOF1 interact differentially with the pol30 mutations to promote transient derepression or complete epigenetic conversions of FLO11. We suggest that the interaction between POL30, RRM3 and TOF1 is essential to maintain epigenetic stability at the studied loci.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Andrew Dolson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
4
|
Syed S, Aloe S, Sutherland JH, Holloman WK, Lue NF. Ustilago maydis Trf2 ensures genome stability by antagonizing Blm-mediated telomere recombination: Fine-tuning DNA repair factor activity at telomeres through opposing regulations. PLoS Genet 2024; 20:e1011515. [PMID: 39652599 DOI: 10.1371/journal.pgen.1011515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/26/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
TRF2 is an essential and conserved double-strand telomere binding protein that stabilizes chromosome ends by suppressing DNA damage response and aberrant DNA repair. Herein we investigated the mechanisms and functions of the Trf2 ortholog in the basidiomycete fungus Ustilago maydis, which manifests strong resemblances to metazoans with regards to the telomere and DNA repair machinery. We showed that UmTrf2 binds to Blm in vitro and inhibits Blm-mediated unwinding of telomeric DNA substrates. Consistent with a similar inhibitory activity in vivo, over-expression of Trf2 induces telomere shortening, just like deletion of blm, which is required for efficient telomere replication. While the loss of Trf2 engenders growth arrest and multiple telomere aberrations, these defects are fully suppressed by the concurrent deletion of blm or mre11 (but not other DNA repair factors). Over-expression of Blm alone triggers aberrant telomere recombination and the accumulation of aberrant telomere structures, which are blocked by concurrent Trf2 over-expression. Together, these findings highlight the suppression of Blm as a key protective mechanism of Trf2. Notably, U. maydis harbors another double-strand telomere-binding protein (Tay1), which promotes Blm activity to ensure efficient replication. We found that deletion of tay1 partially suppresses the telomere aberration of Trf2-depleted cells. Our results thus point to opposing regulation of Blm helicase by telomere proteins as a strategy for optimizing both telomere maintenance and protection. We also show that aberrant transcription of both telomere G- and C-strand is a recurrent phenotype of telomere mutants, underscoring another potential similarity between double strand breaks and de-protected telomeres.
Collapse
Affiliation(s)
- Shahrez Syed
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah Aloe
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Jeanette H Sutherland
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - William K Holloman
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
5
|
Gan Y, Wang L, Liu G, Guo X, Zhou Y, Chang K, Zhang Z, Yan F, Liu Q, Chen B. Transposable Elements Contribute to the Regulation of Long Noncoding RNAs in Drosophila melanogaster. INSECTS 2024; 15:950. [PMID: 39769552 PMCID: PMC11678190 DOI: 10.3390/insects15120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Background: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in D. melanogaster, focusing on the influence of transposons across different omics levels. Results: We identified 16,118 transposons overlapping with lncRNA sequences that constitute 2119 TE-lncRNAs (40.4% of all lncRNAs) using 256 public RNA-seq samples and 15 lncRNA-seq samples of Drosophila S2 cells treated with heavy metals. Of these, 67.2% of TE-lncRNAs contain more than one TE. The LTR/Gypsy family was the most common transposon insertion. Transposons preferred to insert into promoters, transcription starting sites, and intronic regions, especially in chromosome ends. Compared with lncRNAs, TE-lncRNAs showed longer lengths, a lower conservation, and lower levels but a higher specificity of expression. Multi-omics data analysis revealed positive correlations between transposon insertions and chromatin openness at the pre-transcriptional level. Notably, a total of 516 TE-lncRNAs provided transcriptional factor binding sites through transposon insertions. The regulatory network of a key transcription factor was rewired by transposons, potentially recruiting other transcription factors to exert regulatory functions under heavy metal stress. Additionally, 99 TE-lncRNAs were associated with m6A methylation modification sites, and 115 TE-lncRNAs potentially provided candidate small open reading frames through transposon insertions. Conclusions: Our data analysis demonstrated that TEs contribute to the regulation of lncRNAs. TEs not only promote the transcriptional regulation of lncRNAs, but also facilitate their post-transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
- Yuli Gan
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Lingyan Wang
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
| | - Guoxian Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xiruo Guo
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; (Y.Z.); (Z.Z.)
| | - Kexin Chang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China; (K.C.); (F.Y.)
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; (Y.Z.); (Z.Z.)
| | - Fang Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China; (K.C.); (F.Y.)
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Bing Chen
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
6
|
Rodrigues J, Alfieri R, Bione S, Azzalin CM. TERRA ONTseq: a long-read-based sequencing pipeline to study the human telomeric transcriptome. RNA (NEW YORK, N.Y.) 2024; 30:955-966. [PMID: 38777382 PMCID: PMC11251519 DOI: 10.1261/rna.079906.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
The long noncoding RNA TERRA is transcribed from telomeres in virtually all eukaryotes with linear chromosomes. In humans, TERRA transcription is driven in part by promoters comprising CpG dinucleotide-rich repeats of 29 bp repeats, believed to be present in half of the subtelomeres. Thus far, TERRA expression has been analyzed mainly using molecular biology-based approaches that only generate partial and somehow biased results. Here, we present a novel experimental pipeline to study human TERRA based on long-read sequencing (TERRA ONTseq). By applying TERRA ONTseq to different cell lines, we show that the vast majority of human telomeres produce TERRA and that the cellular levels of TERRA transcripts vary according to their chromosomes of origin. Using TERRA ONTseq, we also identified regions containing TERRA transcription start sites (TSSs) in more than half of human subtelomeres. TERRA TSS regions are generally found immediately downstream from 29 bp repeat-related sequences, which appear to be more widespread than previously estimated. Finally, we isolated a novel TERRA promoter from the highly expressed subtelomere of the long arm of Chromosome 7. With the development of TERRA ONTseq, we provide a refined picture of human TERRA biogenesis and expression and we equip the scientific community with an invaluable tool for future studies.
Collapse
Affiliation(s)
- Joana Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Roberta Alfieri
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate (MI) 20054, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon 1649-028, Portugal
| |
Collapse
|
7
|
Angel SO, Vanagas L, Alonso AM. Mechanisms of adaptation and evolution in Toxoplasma gondii. Mol Biochem Parasitol 2024; 258:111615. [PMID: 38354788 DOI: 10.1016/j.molbiopara.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Andres M Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Brann T, Beltramini A, Chaparro C, Berriman M, Doyle SR, Protasio AV. Subtelomeric plasticity contributes to gene family expansion in the human parasitic flatworm Schistosoma mansoni. BMC Genomics 2024; 25:217. [PMID: 38413905 PMCID: PMC10900676 DOI: 10.1186/s12864-024-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The genomic region that lies between the telomere and chromosome body, termed the subtelomere, is heterochromatic, repeat-rich, and frequently undergoes rearrangement. Within this region, large-scale structural changes enable gene diversification, and, as such, large multicopy gene families are often found at the subtelomere. In some parasites, genes associated with proliferation, invasion, and survival are often found in these regions, where they benefit from the subtelomere's highly plastic, rapidly changing nature. The increasing availability of complete (or near complete) parasite genomes provides an opportunity to investigate these typically poorly defined and overlooked genomic regions and potentially reveal relevant gene families necessary for the parasite's lifestyle. RESULTS Using the latest chromosome-scale genome assembly and hallmark repeat richness observed at chromosome termini, we have identified and characterised the subtelomeres of Schistosoma mansoni, a metazoan parasitic flatworm that infects over 250 million people worldwide. Approximately 12% of the S. mansoni genome is classified as subtelomeric, and, in line with other organisms, we find these regions to be gene-poor but rich in transposable elements. We find that S. mansoni subtelomeres have undergone extensive interchromosomal recombination and that these sites disproportionately contribute to the 2.3% of the genome derived from segmental duplications. This recombination has led to the expansion of subtelomeric gene clusters containing 103 genes, including the immunomodulatory annexins and other gene families with unknown roles. The largest of these is a 49-copy plexin domain-containing protein cluster, exclusively expressed in the tegument-the tissue located at the host-parasite physical interface-of intramolluscan life stages. CONCLUSIONS We propose that subtelomeric regions act as a genomic playground for trial-and-error of gene duplication and subsequent divergence. Owing to the importance of subtelomeric genes in other parasites, gene families implicated in this subtelomeric expansion within S. mansoni warrant further characterisation for a potential role in parasitism.
Collapse
Affiliation(s)
- T Brann
- Department of Pathology, University of Cambridge, Cambridge, CB1 2PQ, UK
| | - A Beltramini
- Department of Pathology, University of Cambridge, Cambridge, CB1 2PQ, UK
| | - C Chaparro
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, F-66860, France
| | - M Berriman
- School of Infection and Immunity, University of Glasgow, Glasgow, G12 8TA, UK
| | - S R Doyle
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - A V Protasio
- Department of Pathology, University of Cambridge, Cambridge, CB1 2PQ, UK.
- Christ's College, Cambridge, CB2 3BU, UK.
| |
Collapse
|
9
|
Yeom S, Oh J, Kim D, Lee JS. The 80 th Threonine Residue of Histone H3 Is Important for Maintaining HM Silencing in Saccharomyces cerevisiae. J Microbiol Biotechnol 2024; 34:39-46. [PMID: 37957109 PMCID: PMC10840469 DOI: 10.4014/jmb.2310.10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Gene expression in eukaryotic cells is intricately regulated by chromatin structure and various factors, including histone proteins. In Saccharomyces cerevisiae, transcriptionally silenced regions, such as telomeres and homothallic mating (HM) loci, are essential for genome stability and proper cellular function. We firstly observed the defective HM silencing in alanine substitution mutant of 80th threonine residue of histone H3 (H3T80A). To identify which properties in the H3T80 residue are important for the HM silencing, we created several substitution mutants of H3T80 residue by considering the changed states of charge, polarity, and structural similarity. This study reveals that the structural similarity of the 80th position of H3 to the threonine residue, not the polarity and charges, is the most important thing for the transcriptional silencing in the HM loci.
Collapse
Affiliation(s)
- Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Donghyun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
10
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
11
|
Yegorov YE. Olovnikov, Telomeres, and Telomerase. Is It Possible to Prolong a Healthy Life? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1704-1718. [PMID: 38105192 DOI: 10.1134/s0006297923110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
The science of telomeres and telomerase has made tremendous progress in recent decades. In this review, we consider it first in a historical context (the Carrel-Hayflick-Olovnikov-Blackburn chain of discoveries) and then review current knowledge on the telomere structure and dynamics in norm and pathology. Central to the review are consequences of the telomere shortening, including telomere position effects, DNA damage signaling, and increased genetic instability. Cell senescence and role of telomere length in its development are discussed separately. Therapeutic aspects and risks of telomere lengthening methods including use of telomerase and other approaches are also discussed.
Collapse
Affiliation(s)
- Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Zeinoun B, Teixeira MT, Barascu A. TERRA and Telomere Maintenance in the Yeast Saccharomyces cerevisiae. Genes (Basel) 2023; 14:genes14030618. [PMID: 36980890 PMCID: PMC10048448 DOI: 10.3390/genes14030618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Telomeres are structures made of DNA, proteins and RNA found at the ends of eukaryotic linear chromosomes. These dynamic nucleoprotein structures protect chromosomal tips from end-to-end fusions, degradation, activation of damage checkpoints and erroneous DNA repair events. Telomeres were thought to be transcriptionally silent regions because of their constitutive heterochromatin signature until telomeric long non-coding RNAs (LncRNAs) were discovered. One of them, TERRA (TElomeric Repeat-containing RNA), starts in the subtelomeric regions towards the chromosome ends from different telomeres and has been extensively studied in many evolutionarily distant eukaryotes. Changes in TERRA’s expression can lead to telomeric dysfunction, interfere with the replicative machinery and impact telomere length. TERRA also co-localizes in vivo with telomerase, and can form RNA:DNA hybrid structures called R-loops, which have been implicated in the onset of senescence and the alternative lengthening of telomere (ALT) pathway. Yet, the molecular mechanisms involving TERRA, as well as its function, remain elusive. Here, we review the current knowledge of TERRA transcription, structure, expression, regulation and its multiple telomeric and extra-telomeric functions in the budding yeast Saccharomyces cerevisiae.
Collapse
|
13
|
López-Armas GDC, Ramos-Márquez ME, Navarro-Meza M, Macías-Islas MÁ, Saldaña-Cruz AM, Zepeda-Moreno A, Siller-López F, Cruz-Ramos JA. Leukocyte Telomere Length Predicts Severe Disability in Relapsing-Remitting Multiple Sclerosis and Correlates with Mitochondrial DNA Copy Number. Int J Mol Sci 2023; 24:ijms24020916. [PMID: 36674427 PMCID: PMC9862686 DOI: 10.3390/ijms24020916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease that affects the nervous system. Peripheral blood leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNA-CN) are potential biomarkers of neurological disability and neural damage. Our objective was to assess the LTL and mtDNA-CN in relapsing-remitting MS (RRMS). We included 10 healthy controls, 75 patients with RRMS, 50 of whom had an Expanded Disability Status Scale (EDSS) from 0 to 3 (mild to moderate disability), and 25 had an EDSS of 3.5 to 7 (severe disability). We use the Real-Time Polymerase Chain Reaction (qPCR) technique to quantify absolute LTL and absolute mtDNA-CN. ANOVA test show differences between healthy control vs. severe disability RRMS and mild-moderate RRMS vs. severe disability RRMS (p = 0.0130). LTL and mtDNA-CN showed a linear correlation in mild-moderate disability RRMS (r = 0.378, p = 0.007). Furthermore, we analyzed LTL between RRMS groups with a ROC curve, and LTL can predict severe disability (AUC = 0.702, p = 0.0018, cut-off < 3.0875 Kb, sensitivity = 75%, specificity = 62%), whereas the prediction is improved with a logistic regression model including LTL plus age (AUC = 0.762, p = 0.0001, sensitivity = 79.17%, specificity = 80%). These results show that LTL is a biomarker of disability in RRMS and is correlated with mtDNA-CN in mild-moderate RRMS patients.
Collapse
Affiliation(s)
- Gabriela del Carmen López-Armas
- Laboratorio de Biomédica-Mecatrónica, Subdirección de Investigación y Extensión, Centro de Enseñanza Técnica Industrial Plantel Colomos, Guadalajara 44638, Mexico
| | - Martha Eloisa Ramos-Márquez
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mónica Navarro-Meza
- Laboratorio C. de Neuronutrición y Memoria, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico
| | - Miguel Ángel Macías-Islas
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Ana Miriam Saldaña-Cruz
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Abraham Zepeda-Moreno
- Departamento de Clínicas de la Reproducción Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Fernando Siller-López
- Programa de Bacteriología, Facultad de Ciencias de la Salud, Universidad Católica de Manizales, Manizales 170002, Colombia
| | - José Alfonso Cruz-Ramos
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Coordinación de Investigación, Instituto Jalisciense de Cancerología, Guadalajara 44280, Mexico
- Correspondence:
| |
Collapse
|
14
|
He F, Yu Q, Wang M, Wang R, Gong X, Ge F, Yu X, Li S. SESAME-catalyzed H3T11 phosphorylation inhibits Dot1-catalyzed H3K79me3 to regulate autophagy and telomere silencing. Nat Commun 2022; 13:7526. [PMID: 36473858 PMCID: PMC9726891 DOI: 10.1038/s41467-022-35182-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact mechanism of action for H3pT11 is poorly understood. Here, we report that H3pT11 directly inhibits Dot1-catalyzed H3K79 tri-methylation (H3K79me3) and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they work together to promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM-containing Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.
Collapse
Affiliation(s)
- Fei He
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Qi Yu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Min Wang
- grid.9227.e0000000119573309Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Rongsha Wang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Xuanyunjing Gong
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Feng Ge
- grid.9227.e0000000119573309Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Xilan Yu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Shanshan Li
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| |
Collapse
|
15
|
Kroupa M, Tomasova K, Kavec M, Skrobanek P, Buchler T, Kumar R, Vodickova L, Vodicka P. TElomeric repeat-containing RNA (TERRA): Physiological functions and relevance in cancer. Front Oncol 2022; 12:913314. [PMID: 35982970 PMCID: PMC9380590 DOI: 10.3389/fonc.2022.913314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Telomeres are complex protective structures located at the ends of linear eukaryotic chromosomes. Their purpose is to prevent genomic instability. Research progress in telomere biology during the past decades has identified a network of telomeric transcripts of which the best-studied is TElomeric Repeat-containing RNA (TERRA). TERRA was shown to be important not only for the preservation of telomere homeostasis and genomic stability but also for the expression of hundreds of genes across the human genome. These findings added a new level of complexity to telomere biology. Herein we provide insights on the telomere transcriptome, its relevance for proper telomere function, and its implications in human pathology. We also discuss possible clinical opportunities of exosomal telomere transcripts detection as a biomarker in cancer precision medicine.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| | - Kristyna Tomasova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
| | - Miriam Kavec
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Rajiv Kumar
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| |
Collapse
|
16
|
Zahid S, Aloe S, Sutherland JH, Holloman WK, Lue NF. Ustilago maydis telomere protein Pot1 harbors an extra N-terminal OB fold and regulates homology-directed DNA repair factors in a dichotomous and context-dependent manner. PLoS Genet 2022; 18:e1010182. [PMID: 35587917 PMCID: PMC9119445 DOI: 10.1371/journal.pgen.1010182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/02/2022] [Indexed: 01/11/2023] Open
Abstract
The telomere G-strand binding protein Pot1 plays multifaceted roles in telomere maintenance and protection. We examined the structure and activities of Pot1 in Ustilago maydis, a fungal model that recapitulates key features of mammalian telomere regulation. Compared to the well-characterized primate and fission yeast Pot1 orthologs, UmPot1 harbors an extra N-terminal OB-fold domain (OB-N), which was recently shown to be present in most metazoans. UmPot1 binds directly to Rad51 and regulates the latter's strand exchange activity. Deleting the OB-N domain, which is implicated in Rad51-binding, caused telomere shortening, suggesting that Pot1-Rad51 interaction facilitates telomere maintenance. Depleting Pot1 through transcriptional repression triggered growth arrest as well as rampant recombination, leading to multiple telomere aberrations. In addition, telomere repeat RNAs transcribed from both the G- and C-strand were dramatically up-regulated, and this was accompanied by elevated levels of telomere RNA-DNA hybrids. Telomere abnormalities of pot1-deficient cells were suppressed, and cell viability was restored by the deletion of genes encoding Rad51 or Brh2 (the BRCA2 ortholog), indicating that homology-directed repair (HDR) proteins are key mediators of telomere aberrations and cellular toxicity. Together, these observations underscore the complex physical and functional interactions between Pot1 and DNA repair factors, leading to context-dependent and dichotomous effects of HDR proteins on telomere maintenance and protection.
Collapse
Affiliation(s)
- Syed Zahid
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah Aloe
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Jeanette H. Sutherland
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - William K. Holloman
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Neal F. Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 2022; 114:110386. [PMID: 35569731 DOI: 10.1016/j.ygeno.2022.110386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
|
18
|
Yeom S, Oh J, Lee JS. Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast. Genes Genomics 2022; 44:359-367. [PMID: 35034281 DOI: 10.1007/s13258-021-01203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the budding yeast Saccharomyces cerevisiae, a silent chromatin structure is formed at three distinct loci, including telomeres, rDNA, and mating-type loci, which silence the expression of genes within their structures. Sir2 is the only common factor, regulating the three silent chromatin regions. S. cerevisiae has 32 telomeres, but studies on gene silencing in budding yeast have been performed using some reporter genes, artificially inserted in the telomeric regions. Therefore, insights into the global landscape of Sir-dependent silencing of genes within the silent chromatin regions are required. OBJECTIVE This study aimed to obtain global insights into Sir2-dependent gene silencing on all silent chromatin regions in budding yeast. METHODS RNA-sequencing was performed to identify genes that are silenced by Sir2. By comparing with the chromatin immunoprecipitation-sequencing (ChIP-seq) of Sir2 in the wild-type strain, we confirmed Sir2-regulated genes. RESULTS Using Sir2 ChIP-seq data, we identified that the Sir2 binding domain length caused by Sir2 spreading from the chromosomal end is different in each telomere in budding yeast. Expression of most subtelomeric genes increased in the ∆sir2 strain. Some Sir2-regulated subtelomeric genes were positioned within the telomeric Sir2-binding domain, while the others were outside the Sir2-binding domain. In addition, Sir2 was bound to the mating-type loci and rDNA region, and gene expression increased in the ∆sir2 strain. CONCLUSION We concluded that S. cerevisiae has two modes of Sir2-mediated gene silencing: one is dependent on chromatin binding and spreading of Sir2, and the other is independent of spreading of Sir2.
Collapse
Affiliation(s)
- Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
19
|
Wu W, He JN, Lan M, Zhang P, Chu WK. Transcription-Replication Collisions and Chromosome Fragility. Front Genet 2021; 12:804547. [PMID: 34956339 PMCID: PMC8703014 DOI: 10.3389/fgene.2021.804547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate replication of the entire genome is critical for cell division and propagation. Certain regions in the genome, such as fragile sites (common fragile sites, rare fragile sites, early replicating fragile sites), rDNA and telomeres, are intrinsically difficult to replicate, especially in the presence of replication stress caused by, for example, oncogene activation during tumor development. Therefore, these regions are particularly prone to deletions and chromosome rearrangements during tumorigenesis, rendering chromosome fragility. Although, the mechanism underlying their “difficult-to-replicate” nature and genomic instability is still not fully understood, accumulating evidence suggests transcription might be a major source of endogenous replication stress (RS) leading to chromosome fragility. Here, we provide an updated overview of how transcription affects chromosome fragility. Furthermore, we will use the well characterized common fragile sites (CFSs) as a model to discuss pathways involved in offsetting transcription-induced RS at these loci with a focus on the recently discovered atypical DNA synthesis repair pathway Mitotic DNA Synthesis (MiDAS).
Collapse
Affiliation(s)
- Wei Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Mengjiao Lan
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Targeting of Telomeric Repeat-Containing RNA G-Quadruplexes: From Screening to Biophysical and Biological Characterization of a New Hit Compound. Int J Mol Sci 2021; 22:ijms221910315. [PMID: 34638655 PMCID: PMC8508872 DOI: 10.3390/ijms221910315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing RNA (TERRA), transcribed from telomeres, as potential pharmacological targets. Here, a virtual screening approach to identify a library of drug-like putative TERRA G4 binders, in tandem with circular dichroism melting assay to study their TERRA G4-stabilizing properties, led to the identification of a new hit compound. The affinity of this compound for TERRA RNA and some DNA G4s was analyzed through several biophysical techniques and its biological activity investigated in terms of antiproliferative effect, DNA damage response (DDR) activation, and TERRA RNA expression in high vs. low TERRA-expressing human cancer cells. The selected hit showed good affinity for TERRA G4 and no binding to double-stranded DNA. In addition, biological assays showed that this compound is endowed with a preferential cytotoxic effect on high TERRA-expressing cells, where it induces a DDR at telomeres, probably by displacing TERRA from telomeres. Our studies demonstrate that the identification of TERRA G4-targeting drugs with potential pharmacological effects is achievable, shedding light on new perspectives aimed at discovering new anticancer agents targeting these G4 structures.
Collapse
|
21
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
22
|
Subtelomeric Chromatin in the Fission Yeast S. pombe. Microorganisms 2021; 9:microorganisms9091977. [PMID: 34576871 PMCID: PMC8466458 DOI: 10.3390/microorganisms9091977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Telomeres play important roles in safeguarding the genome. The specialized repressive chromatin that assembles at telomeres and subtelomeric domains is key to this protective role. However, in many organisms, the repetitive nature of telomeric and subtelomeric sequences has hindered research efforts. The fission yeast S. pombe has provided an important model system for dissection of chromatin biology due to the relative ease of genetic manipulation and strong conservation of important regulatory proteins with higher eukaryotes. Telomeres and the telomere-binding shelterin complex are highly conserved with mammals, as is the assembly of constitutive heterochromatin at subtelomeres. In this review, we seek to summarize recent work detailing the assembly of distinct chromatin structures within subtelomeric domains in fission yeast. These include the heterochromatic SH subtelomeric domains, the telomere-associated sequences (TAS), and ST chromatin domains that assemble highly condensed chromatin clusters called knobs. Specifically, we review new insights into the sequence of subtelomeric domains, the distinct types of chromatin that assemble on these sequences and how histone H3 K36 modifications influence these chromatin structures. We address the interplay between the subdomains of chromatin structure and how subtelomeric chromatin is influenced by both the telomere-bound shelterin complexes and by euchromatic chromatin regulators internal to the subtelomeric domain. Finally, we demonstrate that telomere clustering, which is mediated via the condensed ST chromatin knob domains, does not depend on knob assembly within these domains but on Set2, which mediates H3K36 methylation.
Collapse
|
23
|
Chaux-Jukic F, O'Donnell S, Craig RJ, Eberhard S, Vallon O, Xu Z. Architecture and evolution of subtelomeres in the unicellular green alga Chlamydomonas reinhardtii. Nucleic Acids Res 2021; 49:7571-7587. [PMID: 34165564 PMCID: PMC8287924 DOI: 10.1093/nar/gkab534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
In most eukaryotes, subtelomeres are dynamic genomic regions populated by multi-copy sequences of different origins, which can promote segmental duplications and chromosomal rearrangements. However, their repetitive nature has complicated the efforts to sequence them, analyse their structure and infer how they evolved. Here, we use recent genome assemblies of Chlamydomonas reinhardtii based on long-read sequencing to comprehensively describe the subtelomere architecture of the 17 chromosomes of this model unicellular green alga. We identify three main repeated elements present at subtelomeres, which we call Sultan, Subtile and Suber, alongside three chromosome extremities with ribosomal DNA as the only identified component of their subtelomeres. The most common architecture, present in 27 out of 34 subtelomeres, is a heterochromatic array of Sultan elements adjacent to the telomere, followed by a transcribed Spacer sequence, a G-rich microsatellite and transposable elements. Sequence similarity analyses suggest that Sultan elements underwent segmental duplications within each subtelomere and rearranged between subtelomeres at a much lower frequency. Analysis of other green algae reveals species-specific repeated elements that are shared across subtelomeres, with an overall organization similar to C. reinhardtii. This work uncovers the complexity and evolution of subtelomere architecture in green algae.
Collapse
Affiliation(s)
- Frédéric Chaux-Jukic
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Samuel O'Donnell
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, Edinburgh, UK
| | - Stephan Eberhard
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Olivier Vallon
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Zhou Xu
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| |
Collapse
|
24
|
Chaux-Jukic F, O'Donnell S, Craig RJ, Eberhard S, Vallon O, Xu Z. Architecture and evolution of subtelomeres in the unicellular green alga Chlamydomonas reinhardtii. Nucleic Acids Res 2021. [PMID: 34165564 DOI: 10.1101/2021.01.29.428817)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
In most eukaryotes, subtelomeres are dynamic genomic regions populated by multi-copy sequences of different origins, which can promote segmental duplications and chromosomal rearrangements. However, their repetitive nature has complicated the efforts to sequence them, analyse their structure and infer how they evolved. Here, we use recent genome assemblies of Chlamydomonas reinhardtii based on long-read sequencing to comprehensively describe the subtelomere architecture of the 17 chromosomes of this model unicellular green alga. We identify three main repeated elements present at subtelomeres, which we call Sultan, Subtile and Suber, alongside three chromosome extremities with ribosomal DNA as the only identified component of their subtelomeres. The most common architecture, present in 27 out of 34 subtelomeres, is a heterochromatic array of Sultan elements adjacent to the telomere, followed by a transcribed Spacer sequence, a G-rich microsatellite and transposable elements. Sequence similarity analyses suggest that Sultan elements underwent segmental duplications within each subtelomere and rearranged between subtelomeres at a much lower frequency. Analysis of other green algae reveals species-specific repeated elements that are shared across subtelomeres, with an overall organization similar to C. reinhardtii. This work uncovers the complexity and evolution of subtelomere architecture in green algae.
Collapse
Affiliation(s)
- Frédéric Chaux-Jukic
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Samuel O'Donnell
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, Edinburgh, UK
| | - Stephan Eberhard
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Olivier Vallon
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Zhou Xu
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| |
Collapse
|
25
|
Diotti R, Esposito M, Shen CH. Telomeric and Sub-Telomeric Structure and Implications in Fungal Opportunistic Pathogens. Microorganisms 2021; 9:microorganisms9071405. [PMID: 34209786 PMCID: PMC8305976 DOI: 10.3390/microorganisms9071405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Telomeres are long non-coding regions found at the ends of eukaryotic linear chromosomes. Although they have traditionally been associated with the protection of linear DNA ends to avoid gene losses during each round of DNA replication, recent studies have demonstrated that the role of these sequences and their adjacent regions go beyond just protecting chromosomal ends. Regions nearby to telomeric sequences have now been identified as having increased variability in the form of duplications and rearrangements that result in new functional abilities and biodiversity. Furthermore, unique fungal telomeric and chromatin structures have now extended clinical capabilities and understanding of pathogenicity levels. In this review, telomere structure, as well as functional implications, will be examined in opportunistic fungal pathogens, including Aspergillus fumigatus, Candida albicans, Candida glabrata, and Pneumocystis jirovecii.
Collapse
Affiliation(s)
- Raffaella Diotti
- Department of Biological Sciences, Bronx Community College, City University of New York, New York, NY 10453, USA;
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
| | - Michelle Esposito
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
- Department of Biology, College of Staten Island, City University of New York, New York, NY 10314, USA
| | - Chang Hui Shen
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
- Department of Biology, College of Staten Island, City University of New York, New York, NY 10314, USA
- The Graduate Center, PhD Program in Biochemistry, City University of New York, New York, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA
- Correspondence: ; Tel.: +1-(718)-982-3998; Fax: +1-(718)-982-3852
| |
Collapse
|
26
|
Roco ÁS, Liehr T, Ruiz-García A, Guzmán K, Bullejos M. Comparative Distribution of Repetitive Sequences in the Karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae). Genes (Basel) 2021; 12:617. [PMID: 33919402 PMCID: PMC8143290 DOI: 10.3390/genes12050617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Xenopus laevis and its diploid relative, Xenopus tropicalis, are the most used amphibian models. Their genomes have been sequenced, and they are emerging as model organisms for research into disease mechanisms. Despite the growing knowledge on their genomes based on data obtained from massive genome sequencing, basic research on repetitive sequences in these species is lacking. This study conducted a comparative analysis of repetitive sequences in X. laevis and X. tropicalis. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) with Cot DNA of both species revealed a conserved enrichment of repetitive sequences at the ends of the chromosomes in these Xenopus species. The repeated sequences located on the short arm of chromosome 3 from X. tropicalis were not related to the sequences on the short arm of chromosomes 3L and 3S from X. laevis, although these chromosomes were homoeologous, indicating that these regions evolved independently in these species. Furthermore, all the other repetitive sequences in X. tropicalis and X. laevis may be species-specific, as they were not revealed in cross-species hybridizations. Painting experiments in X. laevis with chromosome 7 from X. tropicalis revealed shared sequences with the short arm of chromosome 3L. These regions could be related by the presence of the nucleolus organizer region (NOR) in both chromosomes, although the region revealed by chromosome painting in the short arm of chromosome 3L in X. laevis did not correspond to 18S + 28S rDNA sequences, as they did not colocalize. The identification of these repeated sequences is of interest as they provide an explanation to some problems already described in the genome assemblies of these species. Furthermore, the distribution of repetitive DNA in the genomes of X. laevis and X. tropicalis might be a valuable marker to assist us in understanding the genome evolution in a group characterized by numerous polyploidization events coupled with hybridizations.
Collapse
Affiliation(s)
- Álvaro S. Roco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.); (K.G.)
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany;
| | - Adrián Ruiz-García
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.); (K.G.)
| | - Kateryna Guzmán
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.); (K.G.)
| | - Mónica Bullejos
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.); (K.G.)
| |
Collapse
|
27
|
Zhang S, Yu X, Zhang Y, Xue X, Yu Q, Zha Z, Gogol M, Workman JL, Li S. Metabolic regulation of telomere silencing by SESAME complex-catalyzed H3T11 phosphorylation. Nat Commun 2021; 12:594. [PMID: 33500413 PMCID: PMC7838282 DOI: 10.1038/s41467-020-20711-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeres are organized into a heterochromatin structure and maintenance of silent heterochromatin is required for chromosome stability. How telomere heterochromatin is dynamically regulated in response to stimuli remains unknown. Pyruvate kinase Pyk1 forms a complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex) to regulate gene expression by phosphorylating histone H3T11 (H3pT11). Here, we identify a function of SESAME in regulating telomere heterochromatin structure. SESAME phosphorylates H3T11 at telomeres, which maintains SIR (silent information regulator) complex occupancy at telomeres and protects Sir2 from degradation by autophagy. Moreover, SESAME-catalyzed H3pT11 directly represses autophagy-related gene expression to further prevent autophagy-mediated Sir2 degradation. By promoting H3pT11, serine increases Sir2 protein levels and enhances telomere silencing. Loss of H3pT11 leads to reduced Sir2 and compromised telomere silencing during chronological aging. Together, our study provides insights into dynamic regulation of silent heterochromatin by histone modifications and autophagy in response to cell metabolism and aging.
Collapse
Affiliation(s)
- Shihao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiangyan Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zitong Zha
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|