1
|
Ikeda M, Kondo H, Murakami T, Iwaide S, Itoh Y, Onoue A, Nishimura R, Kamohara A, Imura K, Shibuya H. Systemic amyloid A amyloidosis secondary to chronic enteritis in a captive little owl (Athenenoctua). J Comp Pathol 2025; 218:26-30. [PMID: 40101395 DOI: 10.1016/j.jcpa.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
A male little owl (Athene noctua), approximately 2 years old, collapsed and subsequently died. Grossly, there was hepatomegaly with minimal chalky white lesions on the serosal surface of the liver. The serosal surface of the intestines was also tan to chalky white. Histologically, amorphous eosinophilic material was deposited in the vascular walls and interstitium of many organs, including endoneurial microvessels and perivascular interstitium. These deposits were consistent with amyloid and positive for anti-serum amyloid A (SAA) antibody on immunohistochemical labelling. On mass spectrometry-based proteomic analysis, high levels of SAA were detected. This report provides descriptive details of the histopathological and immunohistochemical findings and mass spectrometry-based proteomic analysis and genetic analysis of systemic amyloidosis with deposition in the peripheral nervous system in a little owl.
Collapse
Affiliation(s)
- Mitsuhiro Ikeda
- Laboratory of Veterinary Pathology, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Tokyo 183-8509, Japan
| | - Susumu Iwaide
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Tokyo 183-8509, Japan
| | - Yoshiyuki Itoh
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Tokyo 183-8509, Japan
| | - Aoi Onoue
- Laboratory of Veterinary Pathology, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Rino Nishimura
- Laboratory of Veterinary Pathology, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Aoi Kamohara
- Pokkur Animal Hospital, 6 Chome-1-3 Maeda 6 Jo, Teine Ward, Sapporo, Hokkaido 006-0816, Japan
| | - Kei Imura
- Pokkur Animal Hospital, 6 Chome-1-3 Maeda 6 Jo, Teine Ward, Sapporo, Hokkaido 006-0816, Japan
| | - Hisashi Shibuya
- Laboratory of Veterinary Pathology, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
2
|
Iwaide S, Murakami T, Sedghi Masoud N, Kobayashi N, Fortin JS, Miyahara H, Higuchi K, Chambers JK. Classification of amyloidosis and protein misfolding disorders in animals 2024: A review on pathology and diagnosis. Vet Pathol 2025; 62:117-138. [PMID: 39389927 DOI: 10.1177/03009858241283750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amyloidosis is a group of diseases in which proteins become amyloid, an insoluble fibrillar aggregate, resulting in organ dysfunction. Amyloid deposition has been reported in various animal species. To diagnose and understand the pathogenesis of amyloidosis, it is important to identify the amyloid precursor protein involved in each disease. Although 42 amyloid precursor proteins have been reported in humans, little is known about amyloidosis in animals, except for a few well-described amyloid proteins, including amyloid A (AA), amyloid light chain (AL), amyloid β (Aβ), and islet amyloid polypeptide-derived amyloid. Recently, several types of novel amyloidosis have been identified in animals using immunohistochemistry and mass spectrometry-based proteomic analysis. Certain species are predisposed to specific types of amyloidosis, suggesting a genetic background for its pathogenesis. Age-related amyloidosis has also emerged due to the increased longevity of captive animals. In addition, experimental studies have shown that some amyloids may be transmissible. Accurate diagnosis and understanding of animal amyloidosis are necessary for appropriate therapeutic intervention and comparative pathological studies. This review provides an updated classification of animal amyloidosis, including associated protein misfolding disorders of the central nervous system, and the current understanding of their pathogenesis. Pathologic features are presented together with state-of-the-art diagnostic methods that can be applied for routine diagnosis and identification of novel amyloid proteins in animals.
Collapse
Affiliation(s)
- Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | | | | | | | - Keiichi Higuchi
- Shinshu University, Matsumoto, Japan
- Meio University, Nago, Japan
| | | |
Collapse
|
3
|
Chang Y, Liu Y, Zou Y, Ye RD. Recent Advances in Studies of Serum Amyloid A: Implications in Inflammation, Immunity and Tumor Metastasis. Int J Mol Sci 2025; 26:987. [PMID: 39940756 PMCID: PMC11817213 DOI: 10.3390/ijms26030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Research on serum amyloid A (SAA) has seen major advancement in recent years with combined approaches of structural analysis and genetically altered mice. Initially identified as an acute-phase reactant, SAA is now recognized as a major player in host defense, inflammation, lipid metabolism and tumor metastasis. SAA binding and the neutralization of LPS attenuate sepsis in mouse models. SAA also displays immunomodulatory functions in Th17 differentiation and macrophage polarization, contributing to a pro-metastatic tumor microenvironment. In spite of the progress, the regulatory mechanisms for these diverse functions of SAA remain unclear. This review provides a brief summary of recent advances in SAA research on immunity, inflammation, tumor microenvironment and in vivo models.
Collapse
Affiliation(s)
- Yixin Chang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuanrui Zou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518000, China
| |
Collapse
|
4
|
Yao X, Kaler M, Qu X, Kalidhindi RSR, Sviridov D, Dasseux A, Barr E, Keeran K, Jeffries KR, Yu ZX, Gao M, Gordon S, Barochia AV, Mills J, Shahid S, Weir NA, Kalchiem-Dekel O, Theard P, Playford MP, Stylianou M, Fitzgerald W, Remaley AT, Levine SJ. Asthmatic patients with high serum amyloid A have proinflammatory HDL: Implications for augmented systemic and airway inflammation. J Allergy Clin Immunol 2024; 153:1010-1024.e14. [PMID: 38092139 PMCID: PMC10999351 DOI: 10.1016/j.jaci.2023.11.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 01/15/2024]
Abstract
RATIONALE Serum amyloid A (SAA) is bound to high-density lipoproteins (HDL) in blood. Although SAA is increased in the blood of patients with asthma, it is not known whether this modifies asthma severity. OBJECTIVE We sought to define the clinical characteristics of patients with asthma who have high SAA levels and assess whether HDL from SAA-high patients with asthma is proinflammatory. METHODS SAA levels in serum from subjects with and without asthma were quantified by ELISA. HDLs isolated from subjects with asthma and high SAA levels were used to stimulate human monocytes and were intravenously administered to BALB/c mice. RESULTS An SAA level greater than or equal to 108.8 μg/mL was defined as the threshold to identify 11% of an asthmatic cohort (n = 146) as being SAA-high. SAA-high patients with asthma were characterized by increased serum C-reactive protein, IL-6, and TNF-α; older age; and an increased prevalence of obesity and severe asthma. HDL isolated from SAA-high patients with asthma (SAA-high HDL) had an increased content of SAA as compared with HDL from SAA-low patients with asthma and induced the secretion of IL-6, IL-1β, and TNF-α from human monocytes via a formyl peptide receptor 2/ATP/P2X purinoceptor 7 axis. Intravenous administration to mice of SAA-high HDL, but not normal HDL, induced systemic inflammation and amplified allergen-induced neutrophilic airway inflammation and goblet cell metaplasia. CONCLUSIONS SAA-high patients with asthma are characterized by systemic inflammation, older age, and an increased prevalence of obesity and severe asthma. HDL from SAA-high patients with asthma is proinflammatory and, when intravenously administered to mice, induces systemic inflammation, and amplifies allergen-induced neutrophilic airway inflammation. This suggests that systemic inflammation induced by SAA-high HDL may augment disease severity in asthma.
Collapse
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | | | - Denis Sviridov
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Amaury Dasseux
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Eric Barr
- Animal Surgery and Resources Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Karen Keeran
- Animal Surgery and Resources Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Kenneth R Jeffries
- Animal Surgery and Resources Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Zu-Xi Yu
- Pathology Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Meixia Gao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Scott Gordon
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Joni Mills
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Shahid Shahid
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Nargues A Weir
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Or Kalchiem-Dekel
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Patricia Theard
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Martin P Playford
- Section on Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Mario Stylianou
- Office of Biostatistics Research, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Md
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Md
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Md.
| |
Collapse
|
5
|
Jayaraman S, Urdaneta A, Bullitt E, Fändrich M, Gursky O. Lipid clearance and amyloid formation by serum amyloid A: exploring the links between beneficial and pathologic actions of an enigmatic protein. J Lipid Res 2023; 64:100429. [PMID: 37604227 PMCID: PMC10509712 DOI: 10.1016/j.jlr.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Serum amyloid A (SAA) is named after a life-threatening disease, yet this small evolutionarily conserved protein must have played a vital role in host defense. Most circulating SAA binds plasma lipoproteins and modulates their metabolism. However, this hardly justifies the rapid and dramatic SAA upregulation in inflammation, which is concomitant with upregulation of secretory phospholipase A2 (sPLA2). We proposed that these proteins synergistically clear cell membrane debris from the sites of injury. The present study uses biochemical and biophysical approaches to further explore the beneficial function of SAA and its potential links to amyloid formation. We show that murine and human SAA1 are powerful detergents that solubilize diverse lipids, including mammalian biomembranes, converting them into lipoprotein-size nanoparticles. These nanoparticles provide ligands for cell receptors, such as scavenger receptor CD36 or heparin/heparan sulfate, act as substrates of sPLA2, and sequester toxic products of sPLA2. Together, these functions enable SAA to rapidly clear unprotected lipids. SAA can also adsorb, without remodeling, to lipoprotein-size nanoparticles such as exosomal liposomes, which are proxies for lipoproteins. SAA in complexes with zwitterionic phospholipids stabilizes α-helices, while SAA in complexes containing anionic lipids or micelle-forming sPLA2 products forms metastable β-sheet-rich species that readily aggregate to form amyloid. Consequently, the synergy between SAA and sPLA2 extends from the beneficial lipid clearance to the pathologic amyloid formation. Furthermore, we show that lipid composition alters SAA conformation and thereby can influence the metabolic fate of SAA-lipid complexes, including their proamyloidogenic and proatherogenic binding to heparan sulfate.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA.
| | - Angela Urdaneta
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Esther Bullitt
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
6
|
Yasar F, Sheridan MS, Hansmann UHE. Interconversion between Serum Amyloid A Native and Fibril Conformations. ACS OMEGA 2022; 7:12186-12192. [PMID: 35449919 PMCID: PMC9016813 DOI: 10.1021/acsomega.2c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of serum amyloid A (SAA) can lead to a form of amyloidosis where the fibrils are made of SAA fragments, most often SAA1-76. Using Replica Exchange with Tunneling, we study the conversion of a SAA1-76 chain between the folded conformation and a fibril conformation. We find that the basins in the free energy landscape corresponding to the two motifs are separated by barriers of only about 2-3 k B T. Crucial for the assembly into the fibril structure is the salt bridge 26E-34K that provides a scaffold for forming the fibril conformation.
Collapse
Affiliation(s)
| | - Miranda S. Sheridan
- Department of Chemistry &
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H. E. Hansmann
- Department of Chemistry &
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
8
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
9
|
Jana AK, Greenwood AB, Hansmann UHE. Presence of a SARS-CoV-2 Protein Enhances Amyloid Formation of Serum Amyloid A. J Phys Chem B 2021; 125:9155-9167. [PMID: 34370466 PMCID: PMC8369982 DOI: 10.1021/acs.jpcb.1c04871] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A marker for the severeness and disease progress of COVID-19 is overexpression of serum amyloid A (SAA) to levels that in other diseases are associated with a risk for SAA amyloidosis. To understand whether SAA amyloidosis could also be a long-term risk of SARS-CoV-2 infections, we have used long all-atom molecular dynamic simulations to study the effect of a SARS-CoV-2 protein segment on SAA amyloid formation. Sampling over 40 μs, we find that the presence of the nine-residue segment SK9, located at the C-terminus of the envelope protein, increases the propensity for SAA fibril formation by three mechanisms: it reduces the stability of the lipid-transporting hexamer shifting the equilibrium toward monomers, it increases the frequency of aggregation-prone configurations in the resulting chains, and it raises the stability of SAA fibrils. Our results therefore suggest that SAA amyloidosis and related pathologies may be a long-term risk of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Augustus B Greenwood
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
10
|
Jana AK, Greenwood AB, Hansmann UHE. Presence of a SARS-COV-2 protein enhances Amyloid Formation of Serum Amyloid A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34031653 PMCID: PMC8142650 DOI: 10.1101/2021.05.18.444723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A marker for the severeness and disease progress of COVID-19 is overexpression of serum amyloid A (SAA) to levels that in other diseases are associated with a risk for SAA amyloidosis. In order to understand whether SAA amyloidosis could also be a long-term risk of SARS-COV-2 infections we have used long all-atom molecular dynamic simulations to study the effect of a SARS-COV-2 protein segment on SAA amyloid formation. Sampling over 40 μs we find that presence of the nine-residue segment SK9, located at the C-terminus of the Envelope protein, increases the propensity for SAA fibril formation by three mechanisms: it reduces the stability of the lipid-transporting hexamer shifting the equilibrium toward monomers, it increases the frequency of aggregation-prone configurations in the resulting chains, and it raises the stability of SAA fibrils. Our results therefore suggest that SAA amyloidosis and related pathologies may be a long-term risk of SARS-COV-2 infections.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Augustus B Greenwood
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Serum amyloid A (SAA) is a highly sensitive acute phase reactant that has been linked to a number of chronic inflammatory diseases. During a systemic inflammatory response, liver-derived SAA is primarily found on high-density lipoprotein (HDL). The purpose of this review is to discuss recent literature addressing the pathophysiological functions of SAA and the significance of its association with HDL. RECENT FINDINGS Studies in gene-targeted mice establish that SAA contributes to atherosclerosis and some metastatic cancers. Accumulating evidence indicates that the lipidation state of SAA profoundly affects its bioactivities, with lipid-poor, but not HDL-associated, SAA capable of inducing inflammatory responses in vitro and in vivo. Factors that modulate the equilibrium between lipid-free and HDL-associated SAA have been identified. HDL may serve to limit SAA's bioactivities in vivo. Understanding the factors leading to the release of systemic SAA from HDL may provide insights into chronic disease mechanisms.
Collapse
Affiliation(s)
- Nancy R Webb
- Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes Center, University of Kentucky, 553 Wethington Building, 900 South Limestone, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
12
|
Collin F, Cerlati O, Couderc F, Lonetti B, Marty JD, Mingotaud AF. Multidisciplinary analysis of protein-lipid interactions and implications in neurodegenerative disorders. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Structural Basis for Vital Function and Malfunction of Serum Amyloid A: an Acute-Phase Protein that Wears Hydrophobicity on Its Sleeve. Curr Atheroscler Rep 2020; 22:69. [PMID: 32968930 PMCID: PMC7511256 DOI: 10.1007/s11883-020-00888-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review addresses normal and pathologic functions of serum amyloid A (SAA), an enigmatic biomarker of inflammation and protein precursor of AA amyloidosis, a life-threatening complication of chronic inflammation. SAA is a small, highly evolutionarily conserved acute-phase protein whose plasma levels increase up to one thousand-fold in inflammation, infection, or after trauma. The advantage of this dramatic but transient increase is unclear, and the complex role of SAA in immune response is intensely investigated. This review summarizes recent advances in our understanding of the structure-function relationship of this intrinsically disordered protein, outlines its newly emerging beneficial roles in lipid transport and inflammation control, and discusses factors that critically influence its misfolding in AA amyloidosis. RECENT FINDINGS High-resolution structures of lipid-free SAA in crystals and fibrils have been determined by x-ray crystallography and electron cryo-microscopy. Low-resolution structural studies of SAA-lipid complexes, together with biochemical, cell-based, animal model, genetic, and clinical studies, have provided surprising new insights into a wide range of SAA functions. An emerging vital role of SAA is lipid encapsulation to remove cell membrane debris from sites of injury. The structural basis for this role has been proposed. The lysosomal origin of AA amyloidosis has solidified, and its molecular and cellular mechanisms have emerged. Recent studies have revealed molecular underpinnings for understanding complex functions of this Cambrian protein in lipid transport, immune response, and amyloid formation. These findings help guide the search for much-needed targeted therapies to block the protein deposition in AA amyloidosis.
Collapse
|
14
|
Chen M, Wu Y, Jia W, Yin M, Hu Z, Wang R, Li W, Wang G. The predictive value of serum amyloid A and C-reactive protein levels for the severity of coronavirus disease 2019. Am J Transl Res 2020; 12:4569-4575. [PMID: 32913530 PMCID: PMC7476119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
This study was designed to assess the levels of human serum amyloid A (SAA) and C-reactive protein (CRP) in patients with coronavirus disease 2019 (COVID-19) to determine their prognostic value in predicting the severity of disease. Patients with COVID-19 who presented with acute respiratory distress syndrome (ARDS) shared distinct characteristics. For example, the patients were older, and had higher levels of inflammatory indicators [i.e., levels of CRP, SAA, procalcitonin (PCT), and interleukin-6; CRP-to-PCT ratio; SAA-to-CRP ratio; and neutrophil-to-lymphocyte ratio (NLR)], higher inflammatory cell counts (i.e., white blood cell count and neutrophil count), and lower lymphocyte counts compared with patients without ARDS. Patients without ARDS still exhibited mild illness and had elevated SAA levels but not CRP levels. In patients with elevated SAA and CRP levels, the NLR was statistically associated with disease severity. According to the receiver operating characteristic curve analysis, the combined predictive probability of CRP and SAA levels, along with white blood cell count, showed the highest area under the curve (AUC; 0.878), and was able to distinguish between patients with and without ARDS. The cut-off level for SAA to predict the severity of COVID-19 was 92.900, with a sensitivity of 95.8%, a specificity of 53.7%, and an AUC of 0.712. For patients with elevated levels of SAA but not CRP, a mild condition was predicted. For patients with elevated levels of both SAA and CRP, and a high NLR, a severe infection was predicted, requiring medical attention. Therefore, CRP and SAA levels demonstrate a prognostic value for predicting the severity of COVID-19.
Collapse
Affiliation(s)
- Meiqiao Chen
- Department of Neurology, Anhui Provincial Hospital, Anhui Medical UniversityHefei 230001, Anhui Province, China
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of ChinaHefei 230001, Anhui Province, China
| | - Yuanbo Wu
- Department of Neurology, Anhui Provincial Hospital, Anhui Medical UniversityHefei 230001, Anhui Province, China
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of ChinaHefei 230001, Anhui Province, China
| | - Wei Jia
- School of Computer Science and Information Engineering, Hefei University of TechnologyHefei 230001, Anhui Province, China
| | - Ming Yin
- Intensive Care Unit, Department of Infectious Disease, The First Affiliated Hospital of University of Science and Technology of ChinaHefei 230001, Anhui Province, China
| | - Zhe Hu
- Respiratory Unit, Department of Infectious Disease, The First Affiliated Hospital of University of Science and Technology of ChinaHefei 230001, Anhui Province, China
| | - Rui Wang
- Intensive Care Unit, Department of Infectious Disease, The First Affiliated Hospital of University of Science and Technology of ChinaHefei 230001, Anhui Province, China
| | - Wenting Li
- 3rd Liver Unit, Department of Infectious Disease, The First Affiliated Hospital of University of Science and Technology of ChinaHefei 230001, Anhui Province, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of ChinaHefei 230001, Anhui Province, China
| |
Collapse
|
15
|
Aly MH, Rahman SS, Ahmed WA, Alghamedi MH, Al Shehri AA, Alkalkami AM, Hassan MH. Indicators of Critical Illness and Predictors of Mortality in COVID-19 Patients. Infect Drug Resist 2020; 13:1995-2000. [PMID: 32617010 PMCID: PMC7326396 DOI: 10.2147/idr.s261159] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022] Open
Abstract
COVID-19 is an emerging disease all over the world and spreading at an unpredicted rate, resulting in significant influences on global economies and public health. Clinical, laboratory, and imaging characteristics have been partially described in some observational studies. Not enough systematic reviews on predictors of critical illness and mortality in COVID 19 have been published to date. In this review, we had illustrated the prognostic predictors of COVID-19 by gathering published information on the risk factors related to the outcomes of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Mohamed H Aly
- Internal Medicine Department, Security Forces Hospital Makkah (SFHM), Makkah al-Mukarrammah, Saudi Arabia
| | - Sayed S Rahman
- Nephrology Department, Internal Medicine Department, Security Forces Hospital Makkah (SFHM), Makkah al-Mukarrammah, Saudi Arabia
| | - Waleed A Ahmed
- Infectious Disease Unit, Internal Medicine Department, Security Forces Hospital Makkah (SFHM), Makkah al-Mukarrammah, Saudi Arabia
| | - Mansour H Alghamedi
- Gastroenterology and Hepatology Department, Internal Medicine Department, Security Forces Hospital Makkah (SFHM), Makkah al-Mukarrammah, Saudi Arabia
| | - Abudlrahman A Al Shehri
- Rheumatology Department, Internal Medicine Department, Security Forces Hospital Makkah (SFHM), Makkah al-Mukarrammah, Saudi Arabia
| | - Amna M Alkalkami
- Nephrology Department, Internal Medicine Department, Security Forces Hospital Makkah (SFHM), Makkah al-Mukarrammah, Saudi Arabia
| | - Mohammed H Hassan
- Medical Biochemistry Department, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
16
|
Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J, Shen B, Gong Z. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis 2020; 94:128-132. [PMID: 32251805 PMCID: PMC7128884 DOI: 10.1016/j.ijid.2020.03.053] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES This study aims to summarize the clinical characteristics of death cases with COVID-19 and to identify critically ill patients of COVID-19 early and reduce their mortality. METHODS The clinical records, laboratory findings and radiological assessments included chest X-ray or computed tomography were extracted from electronic medical records of 25 died patients with COVID-19 in Renmin Hospital of Wuhan University from Jan 14 to Feb 13, 2020. Two experienced clinicians reviewed and abstracted the data. RESULTS The age and underlying diseases (hypertension, diabetes, etc.) were the most important risk factors for death of COVID-19 pneumonia. Bacterial infections may play an important role in promoting the death of patients. Malnutrition was common to severe patients. Multiple organ dysfunction can be observed, the most common organ damage was lung, followed by heart, kidney and liver. The rising of neutrophils, SAA, PCT, CRP, cTnI, D-dimer, LDH and lactate levels can be used as indicators of disease progression, as well as the decline of lymphocytes counts. CONCLUSIONS The clinical characteristics of 25 death cases with COVID-19 we summarized, which would be helpful to identify critically ill patients of COVID-19 early and reduce their mortality.
Collapse
Affiliation(s)
- Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaonan Yan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Longkui Xiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiling Zhu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|