1
|
Matsunaga Y, Qadota H, Ghazal N, Lesanpezeshki L, Dorendorf T, Moody JC, Ahier A, Matheny CJ, Vanapalli SA, Zuryn S, Mayans O, Kwong JQ, Benian GM. Protein kinase 2 of the giant sarcomeric protein UNC-89 regulates mitochondrial morphology and function. Commun Biol 2024; 7:1342. [PMID: 39420071 PMCID: PMC11487192 DOI: 10.1038/s42003-024-07042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
UNC-89 is a giant sarcomeric M-line protein required for sarcomere organization and optimal muscle function. UNC-89 contains two protein kinase domains, PK1 and PK2, separated by an elastic region. Here we show that PK2 is a canonical kinase expected to be catalytically active. C. elegans expressing UNC-89 with a lysine to alanine (KtoA) mutation to inactivate PK2 have normally organized sarcomeres and SR, and normal muscle function. PK2 KtoA mutants have fragmented mitochondria, correlated with more mitochondrially-associated DRP-1. PK2 KtoA mutants have increased ATP levels, increased glycolysis and altered levels of electron transport chain complexes. Muscle mitochondria show increased complex I and decreased complex II basal respiration, each of which cannot be uncoupled. This suggests that mutant mitochondria are already uncoupled, possibly resulting from an increased level of the uncoupling protein, UCP-4. Our results suggest signaling from sarcomeres to mitochondria, to help match energy requirements with energy production.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Nasab Ghazal
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | | | - Till Dorendorf
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Jiang L, Wang X, Zhang D, Yee Yuen KW, Tse YC. RSU-1 regulates the integrity of dense bodies in muscle cells of aging Caenorhabditis elegans. iScience 2024; 27:109854. [PMID: 38784006 PMCID: PMC11112334 DOI: 10.1016/j.isci.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Muscle contraction is vital for animal survival, and the sarcomere is the fundamental unit for this process. However, the functions of many conserved sarcomere proteins remain unknown, as their mutants do not exhibit obvious defects. To address this, Caenorhabditis elegans was utilized as a model organism to investigate RSU-1 function in the body wall muscle. RSU-1 is found to colocalize with UNC-97 at the dense body and M-line, and it is particularly crucial for regulating locomotion in aging worms, rather than in young worms. This suggests that RSU-1 has a specific function in maintaining muscle function during aging. Furthermore, the interaction between RSU-1 and UNC-97/PINCH is essential for RSU-1 to modulate locomotion, preserve filament structure, and sustain the M-line and dense body throughout aging. Overall, these findings highlight the significant contribution of RSU-1, through its interaction with UNC-97, in maintaining proper muscle cell function in aging worms.
Collapse
Affiliation(s)
- Ling Jiang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyan Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Biological Sciences, University of Southampton, Life Sciences Building (Building 85), Highfield Campus, Southampton SO17 1BJ, UK
| | - Yu Chung Tse
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Ge L, Wang N, Li X, Huang Y, Li K, Zuo Y. Phosphoproteomic insight into the changes in structural proteins of muscle architecture associated with texture softening of grass carp (Ctenopharyngodon idella) fillets during chilling storage. Food Chem 2023; 422:136262. [PMID: 37141753 DOI: 10.1016/j.foodchem.2023.136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Texture is an important sensory attribute of fish affected by modifications of structural proteins in muscle architecture. To investigate the changes in protein phosphorylation during texture softening of fish, the proteins of grass carp muscle after chilling storage of 0 day and 6 days were compared by phosphoproteomics, and their association with texture was analyzed. Totally 1026 unique phosphopeptides on 656 phosphoproteins were identified as differential. They were mainly classified as intracellular myofibril and cytoskeleton, and extracellular matrix, of which the molecular function and biological process were binding into supramolecular assembly and myofilament contraction. The concomitant dephosphorylation of kinases and assembly regulators indicated dephosphorylation and disassembly tendency of sarcomeric architecture. Correlation analysis defined the relation between texture and dephosphorylation of myosin light chain, actin, collagen and cytoskeleton. This study revealed that protein phosphorylation may affect the texture of fish muscle through regulating sarcomeric assembly of structural proteins in muscle architecture.
Collapse
Affiliation(s)
- Lihong Ge
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China.
| | - Ningxiaoxuan Wang
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xin Li
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yuli Huang
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China
| | - Kejuan Li
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yong Zuo
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
4
|
Zacharchenko T, Dorendorf T, Locker N, Van Dijk E, Katzemich A, Diederichs K, Bullard B, Mayans O. PK1 from Drosophila obscurin is an inactive pseudokinase with scaffolding properties. Open Biol 2023; 13:220350. [PMID: 37121260 PMCID: PMC10129394 DOI: 10.1098/rsob.220350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Obscurins are large filamentous proteins with crucial roles in the assembly, stability and regulation of muscle. Characteristic of these proteins is a tandem of two C-terminal kinase domains, PK1 and PK2, that are separated by a long intrinsically disordered sequence. The significance of this conserved domain arrangement is unknown. Our study of PK1 from Drosophila obscurin shows that this is a pseudokinase with features typical of the CAM-kinase family, but which carries a minimalistic regulatory tail that no longer binds calmodulin or has mechanosensory properties typical of other sarcomeric kinases. PK1 binds ATP with high affinity, but in the absence of magnesium and lacks detectable phosphotransfer activity. It also has a highly diverged active site, strictly conserved across arthropods, that might have evolved to accommodate an unconventional binder. We find that PK1 interacts with PK2, suggesting a functional relation to the latter. These findings lead us to speculate that PK1/PK2 form a pseudokinase/kinase dual system, where PK1 might act as an allosteric regulator of PK2 and where mechanosensing properties, akin to those described for regulatory tails in titin-like kinases, might now reside on the unstructured interkinase segment. We propose that the PK1-interkinase-PK2 region constitutes an integrated functional unit in obscurin proteins.
Collapse
Affiliation(s)
- Thomas Zacharchenko
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Till Dorendorf
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Evert Van Dijk
- Biosynth B.V., Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
| | | | - Kay Diederichs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
5
|
Porto D, Matsunaga Y, Franke B, Williams RM, Qadota H, Mayans O, Benian GM, Lu H. Conformational changes in twitchin kinase in vivo revealed by FRET imaging of freely moving C. elegans. eLife 2021; 10:e66862. [PMID: 34569929 PMCID: PMC8523150 DOI: 10.7554/elife.66862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
The force-induced unfolding and refolding of proteins is speculated to be a key mechanism in the sensing and transduction of mechanical signals in the living cell. Yet, little evidence has been gathered for its existence in vivo. Prominently, stretch-induced unfolding is postulated to be the activation mechanism of the twitchin/titin family of autoinhibited sarcomeric kinases linked to the mechanical stress response of muscle. To test the occurrence of mechanical kinase activation in living working muscle, we generated transgenic Caenorhabditis elegans expressing twitchin containing FRET moieties flanking the kinase domain and developed a quantitative technique for extracting FRET signals in freely moving C. elegans, using tracking and simultaneous imaging of animals in three channels (donor fluorescence, acceptor fluorescence, and transmitted light). Computer vision algorithms were used to extract fluorescence signals and muscle contraction states in each frame, in order to obtain fluorescence and body curvature measurements with spatial and temporal precision in vivo. The data revealed statistically significant periodic changes in FRET signals during muscle activity, consistent with a periodic change in the conformation of twitchin kinase. We conclude that stretch-unfolding of twitchin kinase occurs in the active muscle, whereby mechanical activity titrates the signaling pathway of this cytoskeletal kinase. We anticipate that the methods we have developed here could be applied to obtaining in vivo evidence for force-induced conformational changes or elastic behavior of other proteins not only in C. elegans but in other animals in which there is optical transparency (e.g., zebrafish).
Collapse
Affiliation(s)
- Daniel Porto
- Interdisciplinary Bioengineering Program, Georgia Institute of TechnologyAtlantaUnited States
| | - Yohei Matsunaga
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Barbara Franke
- Department of Biology, University of KonstanzKonstanzGermany
| | - Rhys M Williams
- Department of Biology, University of KonstanzKonstanzGermany
| | - Hiroshi Qadota
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Olga Mayans
- Department of Biology, University of KonstanzKonstanzGermany
| | - Guy M Benian
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Hang Lu
- Interdisciplinary Bioengineering Program, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemical & Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
6
|
Lesanpezeshki L, Qadota H, Darabad MN, Kashyap K, Lacerda CMR, Szewczyk NJ, Benian GM, Vanapalli SA. Investigating the correlation of muscle function tests and sarcomere organization in C. elegans. Skelet Muscle 2021; 11:20. [PMID: 34389048 PMCID: PMC8362255 DOI: 10.1186/s13395-021-00275-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Caenorhabditis elegans has been widely used as a model to study muscle structure and function. Its body wall muscle is functionally and structurally similar to vertebrate skeletal muscle with conserved molecular pathways contributing to sarcomere structure, and muscle function. However, a systematic investigation of the relationship between muscle force and sarcomere organization is lacking. Here, we investigate the contribution of various sarcomere proteins and membrane attachment components to muscle structure and function to introduce C. elegans as a model organism to study the genetic basis of muscle strength. Methods We employ two recently developed assays that involve exertion of muscle forces to investigate the correlation of muscle function to sarcomere organization. We utilized a microfluidic pillar-based platform called NemaFlex that quantifies the maximum exertable force and a burrowing assay that challenges the animals to move in three dimensions under a chemical stimulus. We selected 20 mutants with known defects in various substructures of sarcomeres and compared the physiological function of muscle proteins required for force generation and transmission. We also characterized the degree of sarcomere disorganization using immunostaining approaches. Results We find that mutants with genetic defects in thin filaments, thick filaments, and M-lines are generally weaker, and our assays are successful in detecting the functional changes in response to each sarcomere location tested. We find that the NemaFlex and burrowing assays are functionally distinct informing on different aspects of muscle physiology. Specifically, the burrowing assay has a larger bandwidth in phenotyping muscle mutants, because it could pick ten additional mutants impaired while exerting normal muscle force in NemaFlex. This enabled us to combine their readouts to develop an integrated muscle function score that was found to correlate with the score for muscle structure disorganization. Conclusions Our results highlight the suitability of NemaFlex and burrowing assays for evaluating muscle physiology of C. elegans. Using these approaches, we discuss the importance of the studied sarcomere proteins for muscle function and structure. The scoring methodology we have developed enhances the utility of C. elegans as a genetic model to study muscle function. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00275-4.
Collapse
Affiliation(s)
- Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | | | - Karishma Kashyap
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nathaniel J Szewczyk
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, United Kingdom & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, DE22 3DT, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
7
|
Fleming JR, Rani A, Kraft J, Zenker S, Börgeson E, Lange S. Exploring Obscurin and SPEG Kinase Biology. J Clin Med 2021; 10:jcm10050984. [PMID: 33801198 PMCID: PMC7957886 DOI: 10.3390/jcm10050984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Three members of the obscurin protein family that contain tandem kinase domains with important signaling functions for cardiac and striated muscles are the giant protein obscurin, its obscurin-associated kinase splice isoform, and the striated muscle enriched protein kinase (SPEG). While there is increasing evidence for the specific roles that each individual kinase domain plays in cross-striated muscles, their biology and regulation remains enigmatic. Our present study focuses on kinase domain 1 and the adjacent low sequence complexity inter-kinase domain linker in obscurin and SPEG. Using Phos-tag gels, we show that the linker in obscurin contains several phosphorylation sites, while the same region in SPEG remained unphosphorylated. Our homology modeling, mutational analysis and molecular docking demonstrate that kinase 1 in obscurin harbors all key amino acids important for its catalytic function and that actions of this domain result in autophosphorylation of the protein. Our bioinformatics analyses also assign a list of putative substrates for kinase domain 1 in obscurin and SPEG, based on the known and our newly proposed phosphorylation sites in muscle proteins, including obscurin itself.
Collapse
Affiliation(s)
- Jennifer R. Fleming
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: (J.R.F.); (E.B.); (S.L.)
| | - Alankrita Rani
- Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; (A.R.); (J.K.)
| | - Jamie Kraft
- Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; (A.R.); (J.K.)
| | - Sanja Zenker
- Department of Medicine, University of California, San Diego, CA 92093, USA;
| | - Emma Börgeson
- Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; (A.R.); (J.K.)
- Department of Clinical Physiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Correspondence: (J.R.F.); (E.B.); (S.L.)
| | - Stephan Lange
- Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; (A.R.); (J.K.)
- Department of Medicine, University of California, San Diego, CA 92093, USA;
- Correspondence: (J.R.F.); (E.B.); (S.L.)
| |
Collapse
|
8
|
Moody JC, Qadota H, Reedy AR, Okafor CD, Shanmugan N, Matsunaga Y, Christian CJ, Ortlund EA, Benian GM. The Rho-GEF PIX-1 directs assembly or stability of lateral attachment structures between muscle cells. Nat Commun 2020; 11:5010. [PMID: 33024114 PMCID: PMC7538588 DOI: 10.1038/s41467-020-18852-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/15/2020] [Indexed: 01/11/2023] Open
Abstract
PIX proteins are guanine nucleotide exchange factors (GEFs) that activate Rac and Cdc42, and are known to have numerous functions in various cell types. Here, we show that a PIX protein has an important function in muscle. From a genetic screen in C. elegans, we found that pix-1 is required for the assembly of integrin adhesion complexes (IACs) at borders between muscle cells, and is required for locomotion of the animal. A pix-1 null mutant has a reduced level of activated Rac in muscle. PIX-1 localizes to IACs at muscle cell boundaries, M-lines and dense bodies. Mutations in genes encoding proteins at known steps of the PIX signaling pathway show defects at muscle cell boundaries. A missense mutation in a highly conserved residue in the RacGEF domain results in normal levels of PIX-1 protein, but a reduced level of activated Rac in muscle, and abnormal IACs at muscle cell boundaries.
Collapse
Affiliation(s)
- Jasmine C Moody
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - April R Reedy
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - C Denise Okafor
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Niveda Shanmugan
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | | | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Grogan A, Tsakiroglou P, Kontrogianni-Konstantopoulos A. Double the trouble: giant proteins with dual kinase activity in the heart. Biophys Rev 2020; 12:1019-1029. [PMID: 32638332 DOI: 10.1007/s12551-020-00715-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obscurin and its homolog, striated muscle preferentially expressed gene (SPEG), constitute a unique group of proteins abundantly expressed in striated muscles that contain two tandemly arranged MLCK-like kinases. The physiological significance of the dual kinase motifs is largely understudied; however, a collection of recent studies characterizing their binding interactions, putative targets, and disease-linked mutations have begun to shed light on their potential roles in muscle pathophysiology. Specifically, obscurin kinase 1 is proposed to regulate cardiomyocyte adhesion via phosphorylating N-cadherin, whereas SPEG kinases 1 and 2 regulate Ca2+ cycling by phosphorylating junctophilin-2 and the sarcoendoplasmic Ca2+ ATPase 2 (SERCA2). Herein, we review what is currently known regarding the potential substrates, physiological roles, and disease associations of obscurin and SPEG tandem kinase domains and provide future directions that have yet to be investigated.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD, 21201, USA
| | - Panagiotis Tsakiroglou
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD, 21201, USA
| | | |
Collapse
|