1
|
Dutta A, Kanaujia SP. The Structural Features of MlaD Illuminate its Unique Ligand-Transporting Mechanism and Ancestry. Protein J 2024; 43:298-315. [PMID: 38347327 DOI: 10.1007/s10930-023-10179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 05/01/2024]
Abstract
The membrane-associated solute-binding protein (SBP) MlaD of the maintenance of lipid asymmetry (Mla) system has been reported to help the transport of phospholipids (PLs) between the outer and inner membranes of Gram-negative bacteria. Despite the availability of structural information, the molecular mechanism underlying the transport of PLs and the ancestry of the protein MlaD remain unclear. In this study, we report the crystal structures of the periplasmic region of MlaD from Escherichia coli (EcMlaD) at a resolution range of 2.3-3.2 Å. The EcMlaD protomer consists of two distinct regions, viz. N-terminal β-barrel fold consisting of seven strands (referred to as MlaD domain) and C-terminal α-helical domain (HD). The protein EcMlaD oligomerizes to give rise to a homo-hexameric ring with a central channel that is hydrophobic and continuous with a variable diameter. Interestingly, the structural analysis revealed that the HD, instead of the MlaD domain, plays a critical role in determining the oligomeric state of the protein. Based on the analysis of available structural information, we propose a working mechanism of PL transport, viz. "asymmetric protomer movement (APM)". Wherein half of the EcMlaD hexamer would rise in the periplasmic side along with an outward movement of pore loops, resulting in the change of the central channel geometry. Furthermore, this study highlights that, unlike typical SBPs, EcMlaD possesses a fold similar to EF/AMT-type beta(6)-barrel and a unique ancestry. Altogether, the findings firmly establish EcMlaD to be a non-canonical SBP with a unique ligand-transport mechanism.
Collapse
Affiliation(s)
- Angshu Dutta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Kerff F, Jourdan S, Francis IM, Deflandre B, Ribeiro Monteiro S, Stulanovic N, Loria R, Rigali S. Common scab disease: structural basis of elicitor recognition in pathogenic Streptomyces species. Microbiol Spectr 2023; 11:e0197523. [PMID: 37791952 PMCID: PMC10714786 DOI: 10.1128/spectrum.01975-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Common scab is a disease caused by a few Streptomyces species that affects important root and tuber crops including potato, beet, radish, and parsnip, resulting in major economic losses worldwide. In this work, we unveiled the molecular basis of host recognition by these pathogens by solving the structure of the sugar-binding protein CebE of Streptomyces scabiei in complex with cellotriose, the main elicitor of the pathogenic lifestyle of these bacteria. We further revealed that the signaling pathway from CebE-mediated transport of cellotriose is conserved in all pathogenic species except Streptomyces ipomoeae, which causes soft rot disease in sweet potatoes. Our work also provides the structural basis of the uptake of cellobiose and cellotriose in saprophytic Streptomyces species, the first step activating the expression of the enzymatic system degrading the most abundant polysaccharide on earth, cellulose.
Collapse
Affiliation(s)
- Frédéric Kerff
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Samuel Jourdan
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Isolde M. Francis
- Department of Biology, California State University, Bakersfield, California, USA
| | - Benoit Deflandre
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Silvia Ribeiro Monteiro
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Nudzejma Stulanovic
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Rosemary Loria
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Sébastien Rigali
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Singh RP, Niharika J, Thakur R, Wagstaff BA, Kumar G, Kurata R, Patel D, Levy CW, Miyazaki T, Field RA. Utilization of dietary mixed-linkage β-glucans by the Firmicute Blautia producta. J Biol Chem 2023; 299:104806. [PMID: 37172725 PMCID: PMC10318527 DOI: 10.1016/j.jbc.2023.104806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The β-glucans are structurally varied, naturally occurring components of the cell walls, and storage materials of a variety of plant and microbial species. In the human diet, mixed-linkage glucans [MLG - β-(1,3/4)-glucans] influence the gut microbiome and the host immune system. Although consumed daily, the molecular mechanism by which human gut Gram-positive bacteria utilize MLG largely remains unknown. In this study, we used Blautia producta ATCC 27340 as a model organism to develop an understanding of MLG utilization. B. producta encodes a gene locus comprising a multi-modular cell-anchored endo-glucanase (BpGH16MLG), an ABC transporter, and a glycoside phosphorylase (BpGH94MLG) for utilizing MLG, as evidenced by the upregulation of expression of the enzyme- and solute binding protein (SBP)-encoding genes in this cluster when the organism is grown on MLG. We determined that recombinant BpGH16MLG cleaved various types of β-glucan, generating oligosaccharides suitable for cellular uptake by B. producta. Cytoplasmic digestion of these oligosaccharides is then performed by recombinant BpGH94MLG and β-glucosidases (BpGH3-AR8MLG and BpGH3-X62MLG). Using targeted deletion, we demonstrated BpSBPMLG is essential for B. producta growth on barley β-glucan. Furthermore, we revealed that beneficial bacteria, such as Roseburia faecis JCM 17581T, Bifidobacterium pseudocatenulatum JCM 1200T, Bifidobacterium adolescentis JCM 1275T, and Bifidobacterium bifidum JCM 1254, can also utilize oligosaccharides resulting from the action of BpGH16MLG. Disentangling the β-glucan utilizing the capability of B. producta provides a rational basis on which to consider the probiotic potential of this class of organism.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India.
| | - Jayashree Niharika
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Raksha Thakur
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Gulshan Kumar
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Dhaval Patel
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Colin W Levy
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Dutta A, Prasad Kanaujia S. MlaC belongs to a unique class of non-canonical substrate-binding proteins and follows a novel phospholipid-binding mechanism. J Struct Biol 2022; 214:107896. [PMID: 36084896 DOI: 10.1016/j.jsb.2022.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/30/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria acts as a formidable barrier against a plethora of detrimental compounds owing to its asymmetric nature. This is because the OM possesses lipopolysaccharides (LPSs) in the outer leaflet and phospholipids (PLs) in the inner leaflet. The maintenance of lipid asymmetry (Mla) system is involved in preserving the distribution of PLs in OM. The periplasmic component of the system MlaC serves as the substrate-binding protein (SBP) that shuttles PLs between the inner and outer membranes. However, an in-depth report highlighting its mechanism of ligand binding is still lacking. This study reports the crystal structure of MlaC from Escherichia coli (EcMlaC) at a resolution of 2.5 Å in a quasi-open state, complexed with PL. The structural analysis reveals that EcMlaC and orthologs comprise two major domains, viz. nuclear transport factor 2-like (NTF2-like) and phospholipid-binding protein (PBP). Each domain can be further divided into two subdomains arranged in a discontinuous fashion. This study further reveals that EcMlaC is polyspecific in nature and follows a reverse mechanism of the opening of the substrate-binding site during the ligand binding. Furthermore, MlaC can bind two PLs by forming subsites in the binding pocket. These findings, altogether, have led to the proposition of the unique "segmented domain movement" mechanism of PL binding, not reported for any known SBP to date. Further, unlike typical SBPs, MlaC has originated from a cystatin-like fold. Overall, this study establishes MlaC to be a non-canonical SBP with a unique ligand-binding mechanism.
Collapse
Affiliation(s)
- Angshu Dutta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
5
|
Deciphering Cellodextrin and Glucose Uptake in Clostridium thermocellum. mBio 2022; 13:e0147622. [PMID: 36069444 PMCID: PMC9601137 DOI: 10.1128/mbio.01476-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sugar uptake is of great significance in industrially relevant microorganisms. Clostridium thermocellum has extensive potential in lignocellulose biorefineries as an environmentally prominent, thermophilic, cellulolytic bacterium. The bacterium employs five putative ATP-binding cassette transporters which purportedly take up cellulose hydrolysates. Here, we first applied combined genetic manipulations and biophysical titration experiments to decipher the key glucose and cellodextrin transporters. In vivo gene inactivation of each transporter and in vitro calorimetric and nuclear magnetic resonance (NMR) titration of each putative sugar-binding protein with various saccharides supported the conclusion that only transporters A and B play the roles of glucose and cellodextrin transport, respectively. To gain insight into the structural mechanism of the transporter specificities, 11 crystal structures, both alone and in complex with appropriate saccharides, were solved for all 5 putative sugar-binding proteins, thus providing detailed specific interactions between the proteins and the corresponding saccharides. Considering the importance of transporter B as the major cellodextrin transporter, we further identified its cryptic, hitherto unknown ATPase-encoding gene as clo1313_2554, which is located outside the transporter B gene cluster. The crystal structure of the ATPase was solved, showing that it represents a typical nucleotide-binding domain of the ATP-binding cassette (ABC) transporter. Moreover, we determined that the inducing effect of cellobiose (G2) and cellulose on cellulosome production could be eliminated by deletion of transporter B genes, suggesting the coupling of sugar transport and regulation of cellulosome components. This study provides key basic information on the sugar uptake mechanism of C. thermocellum and will promote rational engineering of the bacterium for industrial application.
Collapse
|
6
|
Chandravanshi M, Kant Tripathi S, Prasad Kanaujia S. An updated classification and mechanistic insights into ligand binding of the substrate-binding proteins. FEBS Lett 2021; 595:2395-2409. [PMID: 34379808 DOI: 10.1002/1873-3468.14174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
Substrate-binding proteins (SBPs) mediate ligand translocation and have been classified into seven clusters (A-G). Although the substrate specificities of these clusters are known to some extent, their ligand-binding mechanism(s) remain(s) incompletely understood. In this study, the list of SBPs belonging to different clusters was updated (764 SBPs) compared to the previously reported study (504 SBPs). Furthermore, a new cluster referred to as cluster H was identified. Results reveal that SBPs follow different ligand-binding mechanisms. Intriguingly, the majority of the SBPs follow the "one domain movement" rather than the well-known "Venus Fly-trap" mechanism. Moreover, SBPs of a few clusters display subdomain conformational movement rather than the complete movement of the N- and C-terminal domains.
Collapse
Affiliation(s)
- Monika Chandravanshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Sisir Kant Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|