1
|
Retinasamy T, Lee ALY, Lee HS, Lee VLL, Shaikh MF, Yeong KY. Repurposing Anakinra for Alzheimer's Disease: The In Vitro and In Vivo Effects of Anakinra on LPS- and AC-Induced Neuroinflammation. ACS Chem Neurosci 2024; 15:3298-3310. [PMID: 39213521 DOI: 10.1021/acschemneuro.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is a significant global health issue, and studies suggest that neuroinflammation plays a vital role in the advancement of this disease. In this study, anakinra has been shown to display a time- and concentration-dependent antineuroinflammatory effect. In the in vitro studies, it diminished the gene expressions of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO) synthase 2 stimulated by lipopolysaccharide (LPS). Anakinra also reduced the LPS-induced production of NO and reactive oxygen species. Thus, the hypertrophic state of LPS-activated BV2 microglial cells was reversed by anakinra. Furthermore, acrylamide (ACR)-induced activation of nuclear transcription factor-κB, TNF-α, and interleukin-1β was downregulated, while cAMP response element binding protein and brain-derived neurotrophic factor expression levels were markedly enhanced in ACR-treated zebrafish larvae. It was also observed that anakinra improved the uncoordinated swimming behaviors in ACR-exposed zebrafish larvae. Overall, anakinra demonstrated potential antineuroinflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Amber Lot Yee Lee
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Hsien Siang Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange 2795, NSW, Australia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Lee C, Kuo W, Chang Y, Hsu S, Wu C, Chen Y, Chang J, Wang AH. Structure-based development of a canine TNF-α-specific antibody using adalimumab as a template. Protein Sci 2024; 33:e4873. [PMID: 38111376 PMCID: PMC10804672 DOI: 10.1002/pro.4873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
The canine anti-tumor necrosis factor-alpha (TNF-α) monoclonal antibody is a potential therapeutic option for treating canine arthritis. The current treatments for arthritis in dogs have limitations due to side effects, emphasizing the need for safer and more effective therapies. The crystal structure of canine TNF-α (cTNF-α) was successfully determined at a resolution of 1.85 Å, and the protein was shown to assemble as a trimer, with high similarity to the functional quaternary structure of human TNF-α (hTNF-α). Adalimumab (Humira), a known TNF-α inhibitor, effectively targets and neutralizes TNF-α to reduce inflammation and has been used to manage autoimmune conditions such as rheumatoid arthritis. By comparing the structure of cTNF-α with the complex structure of hTNF-α and adalimumab-Fab, the epitope of adalimumab on cTNF-α was identified. The significant structural similarities of epitopes in cTNF-α and hTNF-α indicate the potential of using adalimumab to target cTNF-α. Therefore, a canine/human chimeric antibody, Humivet-R1, was created by grafting the variable domain of adalimumab onto a canine antibody framework derived from ranevetmab. Humivet-R1 exhibits potent neutralizing ability (IC50 = 0.05 nM) and high binding affinity (EC50 = 0.416 nM) to cTNF-α, comparable to that of adalimumab for both hTNF-α and cTNF-α. These results strongly suggest that Humivet-R1 has the potential to provide effective treatment for canine arthritis with reduced side effects. Here, we propose a structure-guided antibody design for the use of a chimeric antibody to treat canine inflammatory disease. Our successful development strategy can speed up therapeutic antibody discovery for animals and has the potential to revolutionize veterinary medicine.
Collapse
Affiliation(s)
- Cheng‐Chung Lee
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Wen‐Chih Kuo
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
| | - Ya‐Wen Chang
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Shu‐Fang Hsu
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Chia‐Hung Wu
- Traditional Chinese Veterinary Medicine, China Medical UniversityTaichungTaiwan
| | - Ya‐Wen Chen
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Jui‐Jen Chang
- Graduate Institute of Integrated Medicine, China Medical UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - Andrew H.‐J. Wang
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Cao K, Liu Z, Liu J, Hu Q, Shan W, Hu B, Shi H, Zhang B. Constitutive photomorphogenic protein 1 ubiquitinates interleukin-1 receptor accessory protein in human liver cancer. J Cancer Res Clin Oncol 2023; 149:16247-16260. [PMID: 37700160 DOI: 10.1007/s00432-023-05367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Constitutive photomorphogenic protein 1 (COP1) plays a pivotal role in the development and progression of several human cancers and is reported to be upregulated in liver cancer. However, the role of COP1 in human liver cancer is unclear. METHODS We analyzed the COP1 expression in normal liver and liver cancer tissue samples using western blot and immunohistochemical analysis. We overexpressed and silenced COP1 in HepG2 and Huh7 cells and analyzed the effect on liver cancer cell proliferation. Additionally, COP1 was used as a bait to screen COP1-interacting proteins in a human cDNA library in a yeast two-hybrid screen and the results were confirmed with co-immunoprecipitation (co-IP) assays. Moreover, immunofluorescence staining was performed to assess co-localization. The protein levels of COP1 and mIL1RAcP were determined in clinical samples. RESULTS COP1 was upregulated in liver cancer samples compared to that in normal tissue samples. COP1 overexpression promoted proliferation of liver cancer cells, while COP1 knockdown exerted the opposite effect. Yeast two-hybrid screen identified interleukin-1 receptor accessory protein (IL1RAP) as a potential COP1-interacting protein. Co-IP assays further confirmed that COP1 interacts with both preIL1RAP and membrane-bound form of IL1RAP (mIL1RAP). Furthermore, COP1 upregulated mIL1RAP protein levels and promoted nuclear translocation and activation of the nuclear factor kappa B (NF-κB) (p50/p65) dimer. Additionally, we demonstrated that COP1 regulated mIL1RAP expression through K63-linked polyubiquitination, suggesting that COP1 plays a role in stabilizing mIL1RAP. Finally, the protein levels of COP1 and mIL1RAcP were found to be positively correlated in clinical samples. CONCLUSION COP1 regulates IL1RAP, which in turn results in activation of the NF-κB signaling. Our findings suggest that the COP1/IL1RAP/NF-κB axis promotes proliferation of liver cancer cells and is a potential target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Kuan Cao
- Institute of Digestive Diseases, Xuzhou Medical University, No. 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyi Liu
- Institute of Digestive Diseases, Xuzhou Medical University, No. 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Liu
- Institute of Digestive Diseases, Xuzhou Medical University, No. 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghe Hu
- Institute of Digestive Diseases, Xuzhou Medical University, No. 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wengang Shan
- Institute of Digestive Diseases, Xuzhou Medical University, No. 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Institute of Digestive Diseases, Xuzhou Medical University, No. 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Institute of Digestive Diseases, Xuzhou Medical University, No. 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bin Zhang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Frenay J, Bellaye PS, Oudot A, Helbling A, Petitot C, Ferrand C, Collin B, Dias AMM. IL-1RAP, a Key Therapeutic Target in Cancer. Int J Mol Sci 2022; 23:ijms232314918. [PMID: 36499246 PMCID: PMC9735758 DOI: 10.3390/ijms232314918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer is a major cause of death worldwide and especially in high- and upper-middle-income countries. Despite recent progress in cancer therapies, such as chimeric antigen receptor T (CAR-T) cells or antibody-drug conjugate (ADC), new targets expressed by the tumor cells need to be identified in order to selectively drive these innovative therapies to tumors. In this context, IL-1RAP recently showed great potential to become one of these new targets for cancer therapy. IL-1RAP is highly involved in the inflammation process through the interleukins 1, 33, and 36 (IL-1, IL-33, IL-36) signaling pathways. Inflammation is now recognized as a hallmark of carcinogenesis, suggesting that IL-1RAP could play a role in cancer development and progression. Furthermore, IL-1RAP was found overexpressed on tumor cells from several hematological and solid cancers, thus confirming its potential involvement in carcinogenesis. This review will first describe the structure and genetics of IL-1RAP as well as its role in tumor development. Finally, a focus will be made on the therapies based on IL-1RAP targeting, which are now under preclinical or clinical development.
Collapse
Affiliation(s)
- Jame Frenay
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Alexandra Oudot
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Alex Helbling
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Camille Petitot
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Christophe Ferrand
- INSERM UMR1098, EFS BFC, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- CanCell Therapeutics, 25000 Besançon, France
| | - Bertrand Collin
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, 21000 Dijon, France
| | - Alexandre M M Dias
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| |
Collapse
|
5
|
Li J, Liu Y, Niu J, Jing C, Jiao N, Huang L, Jiang S, Yan L, Yang W, Li Y. Supplementation with paraformic acid in the diet improved intestinal development through modulating intestinal inflammation and microbiota in broiler chickens. Front Microbiol 2022; 13:975056. [PMID: 36204610 PMCID: PMC9531753 DOI: 10.3389/fmicb.2022.975056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to explore the effects of supplementing paraformic acid (PFA) to the diet of broiler chickens on intestinal development, inflammation, and microbiota. A total of 378 healthy 1-day-old Arbor Acres broilers with similar birth weight were used in this study, and randomly assigned into two treatment groups. The broiler chickens were received a basal diet or a basal diet supplemented with 1,000 mg/kg PFA. Results showed that PFA supplementation increased (P < 0.05) small intestinal villus height and villus height/crypt depth ratio, elevated intestinal mucosal factors (mucin 2, trefoil factor family, and zonula occludens-1) concentrations, and upregulated mNRA expression of y + L amino acid transporter 1. Moreover, PFA supplementation decreased (P < 0.05) the concentrations of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and interleukin-10), activities of caspase-3 and caspase-8, and mNRA expressions of Toll-like Receptor 4, nuclear factor-kappa B, Bax, and Bax/Bcl-2 ratio in small intestinal mucosa. Dietary PFA supplementation also increased (P < 0.05) alpha diversity of cecal microbiota and relative abundance of Alistipes. The present study demonstrated that supplementation of 1,000 mg/kg PFA showed beneficial effects in improving intestinal development, which might be attributed to the suppression of intestinal inflammation and change of gut microbiota composition in broiler chickens. These findings will aid in our knowledge of the mechanisms through which dietary PFA modulates gut development, as well as support the use of PFA in poultry industry.
Collapse
Affiliation(s)
- Junwei Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Qingdao Huaxin Feed Co., Ltd., Qingdao, China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Changwei Jing
- Technical Department, Shandong Chinwhiz Co., Ltd., Weifang, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Lei Yan
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Weiren Yang,
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Yang Li,
| |
Collapse
|
6
|
Jing C, Niu J, Liu Y, Jiao N, Huang L, Jiang S, Yan L, Yang W, Li Y. Tannic Acid Extracted from Galla chinensis Supplementation in the Diet Improves Intestinal Development through Suppressing Inflammatory Responses via Blockage of NF-κB in Broiler Chickens. Animals (Basel) 2022; 12:2397. [PMID: 36139256 PMCID: PMC9495145 DOI: 10.3390/ani12182397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to investigate the effects of adding tannic acid (TA) extracted from Galla chinensis to the diet of broiler chickens on intestinal development. A total of 324 healthy 1-day-old broilers were used in a 42 d study, and divided into two treatment groups at random (six replicates per group). Broilers were either received a basal diet or a basal diet supplemented with 300 mg/kg microencapsulated TA extracted from Galla chinensis. The results showed that dietary supplemented with 300 mg/kg TA from Galla chinensis improved intestinal morphology, promoted intestinal mucosal barrier integrity, and elevated mucosal expressions of nutrients transporters and tight junction protein CLDN3 in broilers. Besides, 300 mg/kg TA from Galla chinensis supplementation decreased the concentrations of inflammatory cytokines in serum and intestinal mucosa and reduced the mRNA expression of NF-κB in intestinal mucosa. Above all, supplementation of 300 mg/kg microencapsulated TA extracted from Galla chinensis showed beneficial effects in improving intestinal development, which might be attributed to the suppression of inflammatory responses via blockage of NF-κB in broiler chickens. These findings will support the use of TA sourced from Galla chinensis in poultry industry.
Collapse
Affiliation(s)
- Changwei Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1#, Wuhan 430070, China
| | - Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Lei Yan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
- Shandong New Hope Liuhe Group Co., Ltd., Jiudongshui Road 592-26#, Qingdao 266100, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| |
Collapse
|
7
|
Kar P, Saleh-E-In MM, Jaishee N, Anandraj A, Kormuth E, Vellingiri B, Angione C, Rahman PKSM, Pillay S, Sen A, Naidoo D, Roy A, Choi YE. Computational profiling of natural compounds as promising inhibitors against the spike proteins of SARS-CoV-2 wild-type and the variants of concern, viral cell-entry process, and cytokine storm in COVID-19. J Cell Biochem 2022; 123:964-986. [PMID: 35342986 DOI: 10.1002/jcb.30243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
The continuous spread and evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the rapid surge in infection cases in the coronavirus disease 2019 (COVID-19) evoke a dire need for effective therapeutics. In this study, we explored the inhibitory potential of a library of 605 phytocompounds, selected from Indian medicinal plants with reported antiviral and anti-inflammatory activities, against the receptor-binding domain of spike proteins of the SARS-CoV-2 wild-type and the variants of concern, including variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Our approach was based on extensive molecular docking, assessment of drug-likeness, and robust molecular dynamics simulations. We also identified promising inhibitory candidates against the host (human) proteins associated with SARS-CoV-2 spike activation and attachment, namely, ACE2 receptor, proteases TMPRSS2 and CTSL, and the endocytic regulator AAK1. In addition, we screened promising inhibitory compounds against the human proinflammatory cytokines- IL-6, IL-1β, TNF-α, and IFN-γ, that are associated with the adverse cytokine storm in COVID-19 patients. Our analysis returned an encouraging list of promising inhibitory candidates that includes: abietatriene against the spike proteins of the SARS-CoV-2 wild-type and the variants of concern; taraxerol against the human ACE2, CTSL and TNF-α; β-amyrin against the human TMPRSS2; cynaroside against the human AAK1 and IL-1β; and friedelin against the human IL-6 and IFN-γ. Our findings provide substantial evidence for the inhibitory potential of these compounds and encourage further in vitro and in vivo studies to validate their use as safe and effective therapeutics against COVID-19.
Collapse
Affiliation(s)
- Pallab Kar
- Molecular Cytogenetics Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, South Korea
| | - Nishika Jaishee
- Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Akash Anandraj
- Centre for Algal Biotechnology, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Emil Kormuth
- Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.,Centre for Digital Innovation, Teesside University, Middlesbrough, UK.,National Horizons Centre, Teesside University, Darlington, UK
| | | | | | - Arnab Sen
- Molecular Cytogenetics Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Devashan Naidoo
- Centre for Algal Biotechnology, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Yong E Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
8
|
Wang S, Tan Q, Hou Y, Dou H. Emerging Roles of Myeloid-Derived Suppressor Cells in Diabetes. Front Pharmacol 2021; 12:798320. [PMID: 34975496 PMCID: PMC8716856 DOI: 10.3389/fphar.2021.798320] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a syndrome characterized by hyperglycemia with or without insulin resistance. Its etiology is attributed to the combined action of genes, environment and immune cells. Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature cells with immunosuppressive ability. In recent years, different studies have debated the quantity, activity changes and roles of MDSC in the diabetic microenvironment. However, the emerging roles of MDSC have not been fully documented with regard to their interactions with diabetes. Here, the manifestations of MDSC and their subsets are reviewed with regard to the incidence of diabetes and diabetic complications. The possible drugs targeting MDSC are discussed with regard to their potential of treating diabetes. We believe that understanding MDSC will offer opportunities to explain pathological characteristics of different diabetes. MDSC also will be used for personalized immunotherapy of diabetes.
Collapse
Affiliation(s)
- Shiqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Zhang X, Xu S, Lu W. Interleukin 1 receptor type I (IL-1RI) is involved in the innate immune response of olive flounder (Paralichthys olivaceus) to resist pathogens. FISH & SHELLFISH IMMUNOLOGY 2021; 119:51-59. [PMID: 34592473 DOI: 10.1016/j.fsi.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The pleiotropic cytokine IL -1 is involved in important immune responses such as thymocyte proliferation and B cell growth and differentiation. Activation of the IL -1 pathway requires its functional receptor IL -1RI, making IL -1RI the critical point of the IL -1 pathway. In-depth study of IL -1RI will help to understand the immune mechanism involved in IL -1. In this study, we identified the cDNA of the IL -1RI gene of olive flounder (PoIL-1RI). The total length of the PoIL-1RI cDNA is 2490 bp, the open reading frame is 1689 bp long and encodes a protein of 562 amino acids. The protein has three Ig domains and a typical TIR domain, as in other mammals and fish. We found that PoIL-1RI is widely expressed in the tissues studied and shows a significant immune response after stimulation with bacteria and pathogen-associated molecular patterns (PAMPs) both in vitro and in vivo. After PoIL-1RI was overexpressed in olive flounder embryonic cell line (FEC), pro-inflammatory cytokines (IL -1β, IL -6, IL -8, TNF-α) and interferon (IFN-α, IFN-γ) were significantly upregulated. And we found that after overexpressing PoIL-1RI in FEC, the antibacterial ability of FEC was significantly stronger than that of the control group, and we found that overexpression of PoIL-1RI gene significantly increased the activity of NF-κB signaling pathway. These results suggest that PoIL-1RI plays an important role in innate immune response.
Collapse
Affiliation(s)
- Xueshu Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Song Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology Shanghai, 201306, China.
| |
Collapse
|