1
|
Chadda A, Nguyen B, Lohman TM, Galburt EA. Structural basis for dimerization and activation of UvrD-family helicases. Proc Natl Acad Sci U S A 2025; 122:e2422330122. [PMID: 40048277 PMCID: PMC11912403 DOI: 10.1073/pnas.2422330122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/07/2025] [Indexed: 03/12/2025] Open
Abstract
UvrD-family helicases are superfamily 1A motor proteins that function during DNA replication, recombination, repair, and transcription. UvrD family monomers translocate along single-stranded (ss) DNA but need to be activated by dimerization to unwind DNA in the absence of force or accessory factors. However, prior structural studies have only revealed monomeric complexes. Here, we report the first structures of a dimeric UvrD-family helicase, Mycobacterium tuberculosis UvrD1, both free and bound to a DNA junction. In each structure, the dimer interface occurs between the 2B subdomains of each subunit. The apo UvrD1 dimer is observed in symmetric compact and extended forms indicating substantial flexibility. This symmetry is broken in the DNA-bound dimer complex with leading and trailing subunits adopting distinct conformations. Biochemical experiments reveal that the Escherichia coli UvrD dimer shares the same 2B-2B interface. In contrast to the dimeric structures, an inactive, autoinhibited UvrD1 DNA-bound monomer structure reveals 2B subdomain-DNA contacts that are likely inhibitory. The major reorientation of the 2B subdomains that occurs upon UvrD1 dimerization prevents these duplex DNA interactions, thus relieving the autoinhibition. These structures reveal that the 2B subdomain serves a major regulatory role rather than participating directly in DNA unwinding.
Collapse
Affiliation(s)
- Ankita Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO63110
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO63110
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO63110
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO63110
| |
Collapse
|
2
|
Chadda A, Nguyen B, Lohman TM, Galburt EA. Structural Basis for Dimerization and Activation of UvrD-family Helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611425. [PMID: 39282289 PMCID: PMC11398504 DOI: 10.1101/2024.09.05.611425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
UvrD-family helicases are superfamily 1A motor proteins that function during DNA replication, recombination, repair, and transcription. UvrD family monomers translocate along single stranded (ss) DNA but need to be activated by dimerization to unwind DNA in the absence of force or accessory factors. However, prior structural studies have only revealed monomeric complexes. Here, we report the first structures of a dimeric UvrD-family helicase, Mycobacterium tuberculosis UvrD1, both free and bound to a DNA junction. In each structure, the dimer interface occurs between the 2B subdomains of each subunit. The apo UvrD1 dimer is observed in symmetric compact and extended forms indicating substantial flexibility. This symmetry is broken in the DNA-bound dimer complex with leading and trailing subunits adopting distinct conformations. Biochemical experiments reveal that the E. coli UvrD dimer shares the same 2B-2B interface. In contrast to the dimeric structures, an inactive, auto-inhibited UvrD1 DNA-bound monomer structure reveals 2B subdomain-DNA contacts that are likely inhibitory. The major re-orientation of the 2B subdomains that occurs upon UvrD1 dimerization prevents these duplex DNA interactions, thus relieving the auto-inhibition. These structures reveal that the 2B subdomain serves a major regulatory role rather than participating directly in DNA unwinding.
Collapse
Affiliation(s)
- Ankita Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
3
|
Nguyen B, Hsieh J, Fischer CJ, Lohman TM. Subunit Communication within Dimeric SF1 DNA Helicases. J Mol Biol 2024; 436:168578. [PMID: 38648969 PMCID: PMC11128345 DOI: 10.1016/j.jmb.2024.168578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Monomers of the Superfamily (SF) 1 helicases, E. coli Rep and UvrD, can translocate directionally along single stranded (ss) DNA, but must be activated to function as helicases. In the absence of accessory factors, helicase activity requires Rep and UvrD homo-dimerization. The ssDNA binding sites of SF1 helicases contain a conserved aromatic amino acid (Trp250 in Rep and Trp256 in UvrD) that stacks with the DNA bases. Here we show that mutation of this Trp to Ala eliminates helicase activity in both Rep and UvrD. Rep(W250A) and UvrD(W256A) can still dimerize, bind DNA, and monomers still retain ATP-dependent ssDNA translocase activity, although with ∼10-fold lower rates and lower processivities than wild type monomers. Although neither wtRep monomers nor Rep(W250A) monomers possess helicase activity by themselves, using both ensemble and single molecule methods, we show that helicase activity is achieved upon formation of a Rep(W250A)/wtRep hetero-dimer. An ATPase deficient Rep monomer is unable to activate a wtRep monomer indicating that ATPase activity is needed in both subunits of the Rep hetero-dimer. We find the same results with E. coli UvrD and its equivalent mutant (UvrD(W256A)). Importantly, Rep(W250A) is unable to activate a wtUvrD monomer and UvrD(W256A) is unable to activate a wtRep monomer indicating that specific dimer interactions are required for helicase activity. We also demonstrate subunit communication within the dimer by virtue of Trp fluorescence signals that only are present within the Rep dimer, but not the monomers. These results bear on proposed subunit switching mechanisms for dimeric helicase activity.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO 63110, USA
| | - John Hsieh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO 63110, USA; Biochemistry & Biophysics, Blueprint Medicines, Cambridge, MA 02139, USA
| | | | - Timothy M Lohman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO 63110, USA.
| |
Collapse
|
4
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Chadda A, Kozlov AG, Nguyen B, Lohman TM, Galburt EA. Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers. J Mol Biol 2024; 436:168367. [PMID: 37972687 PMCID: PMC10836237 DOI: 10.1016/j.jmb.2023.168367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of Tuberculosis. During the host response to infection, the bacterium is exposed to both reactive oxygen species and nitrogen intermediates that can cause DNA damage. It is becoming clear that the DNA damage response in Mtb and related actinobacteria function via distinct pathways as compared to well-studied model bacteria. For example, we have previously shown that the DNA repair helicase UvrD1 is activated for processive unwinding via redox-dependent dimerization. In addition, mycobacteria contain a homo-dimeric Ku protein, homologous to the eukaryotic Ku70/Ku80 dimer, that plays roles in double-stranded break repair via non-homologous end-joining. Kuhas been shown to stimulate the helicase activity of UvrD1, but the molecular mechanism, as well as which redox form of UvrD1 is activated, is unknown. We show here that Ku specifically stimulates multi-round unwinding by UvrD1 monomers which are able to slowly unwind DNA, but at rates 100-fold slower than the dimer. We also demonstrate that the UvrD1 C-terminal Tudor domain is required for the formation of a Ku-UvrD1 protein complex and activation. We show that Mtb Ku dimers bind with high nearest neighbor cooperativity to duplex DNA and that UvrD1 activation is observed when the DNA substrate is bound with two or three Ku dimers. Our observations reveal aspects of the interactions between DNA, Mtb Ku, and UvrD1 and highlight the potential role of UvrD1 in multiple DNA repair pathways through different mechanisms of activation.
Collapse
Affiliation(s)
- Ankita Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Bobrovnikov D, Makurath MA, Wolfe CH, Chemla YR, Ha T. Helicase Activity Modulation with On-Demand Light-Based Conformational Control. J Am Chem Soc 2023; 145:21253-21262. [PMID: 37739407 PMCID: PMC10557133 DOI: 10.1021/jacs.3c05254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 09/24/2023]
Abstract
Engineering a protein variant with a desired role relies on deep knowledge of the relationship between a protein's native structure and function. Using our structural understanding of a regulatory subdomain found in a family of DNA helicases, we engineered novel helicases for which the subdomain orientation is designed to switch between unwinding-inactive and -active conformations upon trans-cis isomerization of an azobenzene-based crosslinker. This on-demand light-based conformational control directly alters helicase activity as demonstrated by both bulk phase experiments and single-molecule optical tweezers analysis of one of the engineered helicases. The "opto-helicase" may be useful in future applications that require spatiotemporal control of DNA hybridization states.
Collapse
Affiliation(s)
- Dmitriy Bobrovnikov
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Monika A. Makurath
- Department
of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Clara H. Wolfe
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Yann R. Chemla
- Department
of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taekjip Ha
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Biophysics, Department of Biological Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Howard Hughes
Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Mersch K, Sokoloski J, Nguyen B, Galletto R, Lohman T. "Helicase" Activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A 2023; 120:e2216777120. [PMID: 37011199 PMCID: PMC10104510 DOI: 10.1073/pnas.2216777120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.
Collapse
Affiliation(s)
- Kacey N. Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Joshua E. Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
- Department of Chemistry, Salisbury University, Salisbury, MD21801
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| |
Collapse
|
8
|
McKenzie AM, Henry C, Myers KS, Place MM, Keck JL. Identification of genetic interactions with priB links the PriA/PriB DNA replication restart pathway to double-strand DNA break repair in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac295. [PMID: 36326440 PMCID: PMC9713433 DOI: 10.1093/g3journal/jkac295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2023]
Abstract
Collisions between DNA replication complexes (replisomes) and impediments such as damaged DNA or proteins tightly bound to the chromosome lead to premature dissociation of replisomes at least once per cell cycle in Escherichia coli. Left unrepaired, these events produce incompletely replicated chromosomes that cannot be properly partitioned into daughter cells. DNA replication restart, the process that reloads replisomes at prematurely terminated sites, is therefore essential in E. coli and other bacteria. Three replication restart pathways have been identified in E. coli: PriA/PriB, PriA/PriC, and PriC/Rep. A limited number of genetic interactions between replication restart and other genome maintenance pathways have been defined, but a systematic study placing replication restart reactions in a broader cellular context has not been performed. We have utilized transposon-insertion sequencing to identify new genetic interactions between DNA replication restart pathways and other cellular systems. Known genetic interactors with the priB replication restart gene (uniquely involved in the PriA/PriB pathway) were confirmed and several novel priB interactions were discovered. Targeted genetic and imaging-based experiments with priB and its genetic partners revealed significant double-strand DNA break accumulation in strains with mutations in dam, rep, rdgC, lexA, or polA. Modulating the activity of the RecA recombinase partially suppressed the detrimental effects of rdgC or lexA mutations in ΔpriB cells. Taken together, our results highlight roles for several genes in double-strand DNA break homeostasis and define a genetic network that facilitates DNA repair/processing upstream of PriA/PriB-mediated DNA replication restart in E. coli.
Collapse
Affiliation(s)
- Aidan M McKenzie
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
9
|
Cueny RR, McMillan SD, Keck JL. G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit Rev Biochem Mol Biol 2022; 57:539-561. [PMID: 36999585 PMCID: PMC10336854 DOI: 10.1080/10409238.2023.2181310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.
Collapse
Affiliation(s)
- Rachel R. Cueny
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Sarah D. McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
10
|
Blaine HC, Burke JT, Ravi J, Stallings CL. DciA Helicase Operators Exhibit Diversity across Bacterial Phyla. J Bacteriol 2022; 204:e0016322. [PMID: 35880876 PMCID: PMC9380583 DOI: 10.1128/jb.00163-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023] Open
Abstract
A fundamental requirement for life is the replication of an organism's DNA. Studies in Escherichia coli and Bacillus subtilis have set the paradigm for DNA replication in bacteria. During replication initiation in E. coli and B. subtilis, the replicative helicase is loaded onto the DNA at the origin of replication by an ATPase helicase loader. However, most bacteria do not encode homologs to the helicase loaders in E. coli and B. subtilis. Recent work has identified the DciA protein as a predicted helicase operator that may perform a function analogous to the helicase loaders in E. coli and B. subtilis. DciA proteins, which are defined by the presence of a DUF721 domain (termed the DciA domain herein), are conserved in most bacteria but have only been studied in mycobacteria and gammaproteobacteria (Pseudomonas aeruginosa and Vibrio cholerae). Sequences outside the DciA domain in Mycobacterium tuberculosis DciA are essential for protein function but are not conserved in the P. aeruginosa and V. cholerae homologs, raising questions regarding the conservation and evolution of DciA proteins across bacterial phyla. To comprehensively define the DciA protein family, we took a computational evolutionary approach and analyzed the domain architectures and sequence properties of DciA domain-containing proteins across the tree of life. These analyses identified lineage-specific domain architectures among DciA homologs, as well as broadly conserved sequence-structural motifs. The diversity of DciA proteins represents the evolution of helicase operation in bacterial DNA replication and highlights the need for phylum-specific analyses of this fundamental biological process. IMPORTANCE Despite the fundamental importance of DNA replication for life, this process remains understudied in bacteria outside Escherichia coli and Bacillus subtilis. In particular, most bacteria do not encode the helicase-loading proteins that are essential in E. coli and B. subtilis for DNA replication. Instead, most bacteria encode a DciA homolog that likely constitutes the predominant mechanism of helicase operation in bacteria. However, it is still unknown how DciA structure and function compare across diverse phyla that encode DciA proteins. In this study, we performed computational evolutionary analyses to uncover tremendous diversity among DciA homologs. These studies provide a significant advance in our understanding of an essential component of the bacterial DNA replication machinery.
Collapse
Affiliation(s)
- Helen C. Blaine
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph T. Burke
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Genomics and Molecular Genetics Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Janani Ravi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
11
|
Mycobacterium tuberculosis DNA repair helicase UvrD1 is activated by redox-dependent dimerization via a 2B domain cysteine. Proc Natl Acad Sci U S A 2022; 119:2114501119. [PMID: 35173050 PMCID: PMC8872793 DOI: 10.1073/pnas.2114501119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes tuberculosis and, during infection, is exposed to reactive oxygen species and reactive nitrogen intermediates from the host immune response that can cause DNA damage. UvrD-like proteins are involved in DNA repair and replication and belong to the SF1 family of DNA helicases that use ATP hydrolysis to catalyze DNA unwinding. In Mtb, there are two UvrD-like enzymes, where UvrD1 is most closely related to other family members. Previous studies have suggested that UvrD1 is exclusively monomeric; however, it is well known that Escherichia coli UvrD and other UvrD family members exhibit monomer-dimer equilibria and unwind as dimers in the absence of accessory factors. Here, we reconcile these incongruent studies by showing that Mtb UvrD1 exists in monomer, dimer, and higher-order oligomeric forms, where dimerization is regulated by redox potential. We identify a 2B domain cysteine, conserved in many Actinobacteria, that underlies this effect. We also show that UvrD1 DNA-unwinding activity correlates specifically with the dimer population and is thus titrated directly via increasing positive (i.e., oxidative) redox potential. Consistent with the regulatory role of the 2B domain and the dimerization-based activation of DNA unwinding in UvrD family helicases, these results suggest that UvrD1 is activated under oxidizing conditions when it may be needed to respond to DNA damage during infection.
Collapse
|