1
|
Tripplehorn SA, Shirra MK, Lardo SM, Marvil HG, Hainer SJ, Arndt KM. A direct interaction between the Chd1 CHCT domain and Rtf1 controls Chd1 distribution and nucleosome positioning on active genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627179. [PMID: 39677735 PMCID: PMC11643122 DOI: 10.1101/2024.12.06.627179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The nucleosome remodeler Chd1 is required for the re-establishment of nucleosome positioning in the wake of transcription elongation by RNA Polymerase II. Previously, we found that Chd1 occupancy on gene bodies depends on the Rtf1 subunit of the Paf1 complex in yeast. Here, we identify an N-terminal region of Rtf1 and the CHCT domain of Chd1 as sufficient for their interaction and demonstrate that this interaction is direct. Mutations that disrupt the Rtf1-Chd1 interaction result in an accumulation of Chd1 at the 5' ends of Chd1-occupied genes, increased cryptic transcription, altered nucleosome positioning, and concordant shifts in histone modification profiles. We show that a homologous region within mouse RTF1 interacts with the CHCT domains of mouse CHD1 and CHD2. This work supports a conserved mechanism for coupling Chd1 family proteins to the transcription elongation complex and identifies a cellular function for a domain within Chd1 about which little is known.
Collapse
Affiliation(s)
| | - Margaret K. Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Hannah G. Marvil
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
2
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
3
|
Gupta A, Kumar A, Singh N, Patel M, Studitsky VM, Zhang KYJ, Akhtar MS. The Ser7 of RNA Pol II-CTD influences the recruitment of Cdc73 for mRNA transcription. Int J Biol Macromol 2024; 254:127881. [PMID: 37944716 DOI: 10.1016/j.ijbiomac.2023.127881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The carboxyl terminal domain of the largest subunit of eukaryotic RNA polymerase II (RNAPII) consists of highly conserved tandem repeats of Tyr1Ser2Pro3Thr4Ser5Pro6Ser7, referred as CTD. The CTD undergoes posttranslational modifications where the interplay of kinases imparts specific CTD phosphorylations, recognized by regulatory proteins that help in the mRNA transcription. Here, the Ser5 phosphorylation (Ser5P) remains high during the transcription initiation, followed by the Ser2P which peaks towards the termination and the Ser7P remains high throughout the transcription process. The Paf1 elongation complex (Paf1C) through its Cdc73 subunit is recruited to the phosphorylated CTD and play active role during different stages of mRNA transcription. We show that the CTD binding domain of Cdc73 is an independent folding unit which interacts with the hyper phosphorylated CTD. The 500 ns MD simulation studies further identified the binding interface and the pattern of CTD phosphorylation involved in the interaction with Cdc73. The possible key residues were mutated and the subsequent pull down analysis suggests that the phosphorylated Ser2, Ser5 and Ser7 of the tandem CTD heptads interact respectively with Arg310, Arg268 and Arg300 of Cdc73. Our finding provides new insight for Cdc73 function during mRNA transcription.
Collapse
Affiliation(s)
- Adity Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Neha Singh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Madhu Patel
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vasily M Studitsky
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Md Sohail Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Qin Y, Zhou Y, Cao Y, Ren Y, Deng P, Jiang J, Wang Z. Structural Basis of the Transcriptional Elongation Factor Paf1 Core Complex from Saccharomyces eubayanus. Int J Mol Sci 2023; 24:ijms24108730. [PMID: 37240075 DOI: 10.3390/ijms24108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The multicomponent polymerase associated factor 1 (Paf1) complex (PAF1C) is an important transcription elongation factor that upregulates RNA polymerase II-mediated genome-wide transcription. PAF1C can regulate transcription through direct association with the polymerase or by impacting the chromatin structure epigenetically. In recent years, significant progress has been made in understanding the molecular mechanisms of PAF1C. However, high-resolution structures that can clarify the interaction details among the components of the complex are still needed. In this study, we evaluated the structural core of the yeast PAF1C containing the four components Ctr9, Paf1, Cdc73 and Rtf1 at high resolution. We observed the interaction details among these components. In particular, we identified a new binding surface of Rtf1 on PAF1C and found that the C-terminal sequence of Rtf1 dramatically changed during evolution, which may account for its different binding affinities to PAF1C among species. Our work presents a precise model of PAF1C, which will facilitate our understanding of the molecular mechanism and the in vivo function of the yeast PAF1C.
Collapse
Affiliation(s)
- Yan Qin
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Yuqiao Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Pujuan Deng
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Junyi Jiang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
5
|
The Paf1 complex is required for RNA polymerase II removal in response to DNA damage. Proc Natl Acad Sci U S A 2022; 119:e2207332119. [PMID: 36161924 DOI: 10.1073/pnas.2207332119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rpb1, the largest subunit of RNA polymerase II (RNAPII), is rapidly polyubiquitinated and degraded in response to DNA damage; this process is considered to be a "mechanism of last resort'' employed by cells. The underlying mechanism of this process remains elusive. Here, we uncovered a previously uncharacterized multistep pathway in which the polymerase-associated factor 1 (Paf1) complex (PAF1C, composed of the subunits Ctr9, Paf1, Leo1, Cdc73, and Rtf1) is involved in regulating the RNAPII pool by stimulating Elongin-Cullin E3 ligase complex-mediated Rpb1 polyubiquitination and subsequent degradation by the proteasome following DNA damage. Mechanistically, Spt5 is dephosphorylated following DNA damage, thereby weakening the interaction between the Rtf1 subunit and Spt5, which might be a key step in initiating Rpb1 degradation. Next, Rad26 is loaded onto stalled RNAPII to replace the Spt4/Spt5 complex in an RNAPII-dependent manner and, in turn, recruits more PAF1C to DNA lesions via the binding of Rad26 to the Leo1 subunit. Importantly, the PAF1C, assembled in a Ctr9-mediated manner, coordinates with Rad26 to localize the Elongin-Cullin complex on stalled RNAPII, thereby inducing RNAPII removal, in which the heterodimer Paf1/Leo1 and the subunit Cdc73 play important roles. Together, our results clearly revealed a new role of the intact PAF1C in regulating the RNAPII pool in response to DNA damage.
Collapse
|
6
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
7
|
Kubota Y, Ota N, Takatsuka H, Unno T, Onami S, Sugimoto A, Ito M. The
PAF1
complex cell‐autonomously promotes oogenesis in
Caenorhabditis elegans. Genes Cells 2022; 27:409-420. [PMID: 35430776 PMCID: PMC9321568 DOI: 10.1111/gtc.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
The RNA polymerase II‐associated factor 1 complex (PAF1C) is a protein complex that consists of LEO1, RTF1, PAF1, CDC73, and CTR9, and has been shown to be involved in RNA polymerase II‐mediated transcriptional and chromatin regulation. Although it has been shown to regulate a variety of biological processes, the precise role of the PAF1C during germ line development has not been clarified. In this study, we found that reduction in the function of the PAF1C components, LEO‐1, RTFO‐1, PAFO‐1, CDC‐73, and CTR‐9, in Caenorhabditis elegans affects oogenesis. Defects in oogenesis were also confirmed using an oocyte maturation marker, OMA‐1::GFP. While four to five OMA‐1::GFP‐positive oocytes were observed in wild‐type animals, their numbers were significantly decreased in pafo‐1 mutant and leo‐1(RNAi), pafo‐1(RNAi), and cdc‐73(RNAi) animals. Expression of a functional PAFO‐1::mCherry transgene in the germline significantly rescued the oogenesis‐defective phenotype of the pafo‐1 mutants, suggesting that expression of the PAF1C in germ cells is required for oogenesis. Notably, overexpression of OMA‐1::GFP partially rescued the oogenesis defect in the pafo‐1 mutants. Based on our findings, we propose that the PAF1C promotes oogenesis in a cell‐autonomous manner by positively regulating the expression of genes involved in oocyte maturation.
Collapse
Affiliation(s)
- Yukihiro Kubota
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Natsumi Ota
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Takuma Unno
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Shuichi Onami
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- RIKEN Center for Biosystems Dynamics Research 2‐2‐3, Minatojima‐minamimachi, Chuo‐ku Kobe Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dinamics Graduate School of Life Sciences, Tohoku University 2‐1‐1 Katahira Sendai Miyagi Japan
| | - Masahiro Ito
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| |
Collapse
|