1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Gilloteaux J, Charlier C, Suain V, Nicaise C. Astrocyte alterations during Osmotic Demyelination Syndrome: intermediate filaments, aggresomes, proteasomes, and glycogen storages. Ultrastruct Pathol 2025; 49:170-215. [PMID: 40062739 DOI: 10.1080/01913123.2025.2468700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION A murine model mimicking the human osmotic demyelination syndrome (ODS) revealed with histology demyelinated alterations in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei 12 h and 48 h after chronic hyponatremia due to a fast reinstatement of osmolality. Abnormal expression astrocyte markers ALDHL1 and GFAP with immunohistochemistry in these ODS altered zones, prompted aims to verify in both protoplasmic and fibrillar astrocytes with ultrastructure those changes and other associated subcellular modifications. METHOD This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6), and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of those four groups of mice, with LM and ultrastructure microscopy, the thalamic zones included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3) samples. There, comparisons between astrocytes included organelles, GFAP, and glycogen content changes. RESULTS Thalamic ODS epicenter damages comprised both protoplasmic (PA) and fibrillar (FA) astrocyte necroses along with those of neuropil destructions and neuron Wallerian demyelinated injuries surrounded by a centrifugal region gradient revealing worse to mild destructions. Ultrastructure aspects of resilient HN and ODS12h PAs disclosed altered mitochondria and accumulations of beta- to alpha-glycogen granules that became eventually captured into phagophores as glycophagosomes in ODS48h. HN and ODS12h time lapse FAs accumulated ribonucleoproteins, cytoskeletal aggresomes, and proteasomes but distant and resilient ODS48h FAs maintained GFAP fibrils along with typical mitochondria and dispersed β-glycogen, including in their neuropil surroundings. Thus, ODS triggered astrocyte injuries that involved both post-transcriptional and post-translational modifications such that astrocytes were unable to use glycogen and metabolites due to their own mitochondria defects while accumulated stalled ribonucleoproteins, cytoskeletal aggresomes were associated with proteasomes and GFAP ablation. Resilient but distant astrocytes revealed restitution of amphibolism where typical carbohydrate storages were revealed along with GFAP, as tripartite extensions supply for restored nerve axon initial segments, neural Ranvier's junctions, and oligodendrocyte -neuron junctional contacts. CONCLUSION ODS caused astrocyte damage associated with adjacent neuropil destruction that included a regional demyelination caused by a loss of dispatched energetic and metabolic exchanges within the injured region, bearing proportional and collateral centrifugal injuries, which involved reactive repairs time after rebalanced osmolarity.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
- Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at the Northumbria University, Newcastle upon Tyne, UK
| | - Corry Charlier
- Electron Microscopy Platform, MORPH-IM, Université de Namur, Bruxelles, Belgium
| | - Valérie Suain
- CMMI - The Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Charles Nicaise
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
3
|
Iuchi S, Paulo JA. The role of MKI67 in the regulation of 60S pre-ribosome nucleolar export, transcripts, energy supply, and apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638155. [PMID: 39990431 PMCID: PMC11844515 DOI: 10.1101/2025.02.13.638155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
MKI67 (Ki67) is expressed exclusively in proliferating cells in human tissues, rendering it as a valuable diagnostic marker for cancer. However, the function of this protein in cells remains unclear. In this study, we present the findings on the regulatory functions of MKI67 in conjunction with its partner proteins GNL2 and MDN1, which are involved in pre-ribosome processing, as well as the regulatory functions in its absence. In proliferating HEK293T cells, MKI67 binds contiguously to the chromatin in conjunction with GNL2 and MDN1, localizing most densely to the nucleolar periphery to regulate 60S pre-ribosome export. On the other hand, RNA-seq analysis reveals that these three proteins can independently regulate many target transcripts, but they often share their target transcripts, yet often regulate them at different expression levels. MDN1 depletion strongly downregulates RNA gene transcripts involved in ribosome biogenesis and splicing. In contrast, MKI67 depletion strongly upregulates transcripts of protein-coding genes, including synapse-specific proteins and the mitosis-related protein NEK7. Furthermore, MKI67 depletion coordinately up- or down-regulates the levels of transcripts of several pathways, thereby enabling MKI67-depleted cells to adapt to less active metabolic states. The underlying mechanism by which MKI67 depletion upregulates transcripts appears to involve attenuation of transcript levels in cooperation with mRNA degradation systems, as evidenced by analysis of NEK7 and UNC13A translations. In conclusion, the present results indicate that MKI67 contributes to proliferation via nucleolar export of 60S pre-ribosome particles and high energy supply. Conversely, its absence leads the cells to adapt to the senescent and differentiated conditions.
Collapse
|
4
|
Winden KD, Ruiz JF, Sahin M. Construction destruction: Contribution of dyregulated proteostasis to neurodevelopmental disorders. Curr Opin Neurobiol 2025; 90:102934. [PMID: 39612590 PMCID: PMC11839335 DOI: 10.1016/j.conb.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Genetic causes of neurodevelopmental disorders (NDDs) such as epilepsy and autism spectrum disorder are rapidly being uncovered. The genetic risk factors that are responsible for various NDDs fall into many categories, and while some genes such as those involved in synaptic transmission are expected, there are several other classes of genes whose involvement in these disorders is not intuitive. One such group of genes is involved in protein synthesis and degradation, and the balance between these opposing pathways is termed proteostasis. Here, we review these pathways, the genetics of the related neurological disorders, and some potential disease mechanisms. Improved understanding of this collection of genetic disorders will be informative for the pathogenesis of these disorders and imply novel therapeutic strategies.
Collapse
Affiliation(s)
- Kellen D Winden
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan F Ruiz
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Ianni A, Ihling CH, Vranka T, Matoušek V, Sinz A, Iacobucci C. Evaluating Imide-Based Mass Spectrometry-Cleavable Cross-Linkers for Structural Proteomics Studies. JACS AU 2024; 4:2936-2943. [PMID: 39211594 PMCID: PMC11350583 DOI: 10.1021/jacsau.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Disuccinimidyl dibutyric urea (DSBU) is a mass spectrometry (MS)-cleavable cross-linker that has multiple applications in structural biology, ranging from isolated protein complexes to comprehensive system-wide interactomics. DSBU facilitates a rapid and reliable identification of cross-links through the dissociation of its urea group in the gas phase. In this study, we further advance the structural capabilities of DSBU by remodeling the urea group into an imide, thus introducing a novel class of cross-linkers. This modification preserves the MS cleavability of the amide bond, granted by the two acyl groups of the imide function. The central nitrogen atom enables the introduction of affinity purification tags. Here, we introduce disuccinimidyl disuccinic imide (DSSI) as a prototype of this class of cross-linkers. It features a phosphonate handle for immobilized metal ion affinity chromatography enrichment. We detail DSSI synthesis and describe its behavior in solution and in the gas phase while cross-linking isolated proteins and human cell lysates. DSSI and DSBU cross-links are compared at the same enrichment depth to bridge these two cross-linker classes. We validate DSSI cross-links by mapping them in high-resolution structures of large protein assemblies. The cross-links observed yield insights into the morphology of intrinsically disordered proteins and their complexes. The DSSI linker might spearhead a novel class of MS-cleavable and enrichable cross-linkers.
Collapse
Affiliation(s)
- Alessio
Di Ianni
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale D-01620, Germany
- Center
for Structural Mass Spectrometry, Martin
Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale D-01620, Germany
| | - Christian H. Ihling
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale D-01620, Germany
- Center
for Structural Mass Spectrometry, Martin
Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale D-01620, Germany
| | - Tomáš Vranka
- CF
Plus Chemicals s.r.o., Karásek 1767/1, Brno-Řečkovice 621 00, Czechia
| | - Václav Matoušek
- CF
Plus Chemicals s.r.o., Karásek 1767/1, Brno-Řečkovice 621 00, Czechia
| | - Andrea Sinz
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale D-01620, Germany
- Center
for Structural Mass Spectrometry, Martin
Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale D-01620, Germany
| | - Claudio Iacobucci
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale D-01620, Germany
- Center
for Structural Mass Spectrometry, Martin
Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale D-01620, Germany
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, Coppito II 67100, L’Aquila, Italy
| |
Collapse
|
6
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
7
|
Krejčová G, Danielová A, Sehadová H, Dyčka F, Kubásek J, Moos M, Bajgar A. Macrophages play a nutritive role in post-metamorphic maturation in Drosophila. Development 2024; 151:dev202492. [PMID: 38456486 DOI: 10.1242/dev.202492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
In the body of multicellular organisms, macrophages play an indispensable role in maintaining tissue homeostasis by removing old, apoptotic and damaged cells. In addition, macrophages allow significant remodeling of body plans during embryonic morphogenesis, regeneration and metamorphosis. Although the huge amount of organic matter that must be removed during these processes represents a potential source of nutrients, their further use by the organism has not yet been addressed. Here, we document that, during metamorphosis, Drosophila larval adipose tissue is infiltrated by macrophages, which remove dying adipocytes by efferocytosis and engulf leaking RNA-protein granules and lipids. Consequently, the infiltrating macrophages transiently adopt the adipocyte-like metabolic profile to convert remnants of dying adipocytes to lipoproteins and storage peptides that nutritionally support post-metamorphic development. This process is fundamental for the full maturation of ovaries and the achievement of early fecundity of individuals. Whether macrophages play an analogous role in other situations of apoptotic cell removal remains to be elucidated.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Adéla Danielová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Hana Sehadová
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Filip Dyčka
- Department of Chemistry, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Martin Moos
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| |
Collapse
|
8
|
Anadolu MN, Sun J, Li JTY, Graber TE, Ortega J, Sossin WS. Puromycin reveals a distinct conformation of neuronal ribosomes. Proc Natl Acad Sci U S A 2024; 121:e2306993121. [PMID: 38315848 PMCID: PMC10873636 DOI: 10.1073/pnas.2306993121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Puromycin is covalently added to the nascent chain of proteins by the peptidyl transferase activity of the ribosome and the dissociation of the puromycylated peptide typically follows this event. It was postulated that blocking the translocation of the ribosome with emetine could retain the puromycylated peptide on the ribosome, but evidence against this has recently been published [Hobson et al., Elife 9, e60048 (2020); and Enam et al., Elife 9, e60303 (2020)]. In neurons, puromycylated nascent chains remain in the ribosome even in the absence of emetine, yet direct evidence for this has been lacking. Using biochemistry and cryoelectron microscopy, we show that the puromycylated peptides remain in the ribosome exit channel in the large subunit in a subset of neuronal ribosomes stalled in the hybrid state. These results validate previous experiments to localize stalled polysomes in neurons and provide insight into how neuronal ribosomes are stalled. Moreover, in these hybrid-state neuronal ribosomes, anisomycin, which usually blocks puromycylation, competes poorly with puromycin in the puromycylation reaction, allowing a simple assay to determine the proportion of nascent chains that are stalled in this state. In early hippocampal neuronal cultures, over 50% of all nascent peptides are found in these stalled polysomes. These results provide insights into the stalling mechanisms of neuronal ribosomes and suggest that puromycylated peptides can be used to reveal subcellular sites of hybrid-state stalled ribosomes in neurons.
Collapse
Affiliation(s)
- Mina N. Anadolu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, QCH3G 0B1, Canada
| | - Jewel T.-Y. Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Tyson E. Graber
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, QCH3G 0B1, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
| |
Collapse
|
9
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
De Luca C, Gupta A, Bortvin A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 2023; 19:e1010797. [PMID: 37307272 DOI: 10.1371/journal.pgen.1010797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
Affiliation(s)
- Chiara De Luca
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| |
Collapse
|
11
|
Anadolu MN, Sun J, Kailasam S, Chalkiadaki K, Krimbacher K, Li JTY, Markova T, Jafarnejad SM, Lefebvre F, Ortega J, Gkogkas CG, Sossin WS. Ribosomes in RNA Granules Are Stalled on mRNA Sequences That Are Consensus Sites for FMRP Association. J Neurosci 2023; 43:2440-2459. [PMID: 36849416 PMCID: PMC10082463 DOI: 10.1523/jneurosci.1002-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Local translation in neurons is partly mediated by the reactivation of stalled polysomes. Stalled polysomes may be enriched within the granule fraction, defined as the pellet of sucrose gradients used to separate polysomes from monosomes. The mechanism of how elongating ribosomes are reversibly stalled and unstalled on mRNAs is still unclear. In the present study, we characterize the ribosomes in the granule fraction using immunoblotting, cryogenic electron microscopy (cryo-EM), and ribosome profiling. We find that this fraction, isolated from 5-d-old rat brains of both sexes, is enriched in proteins implicated in stalled polysome function, such as the fragile X mental retardation protein (FMRP) and Up-frameshift mutation 1 homologue. Cryo-EM analysis of ribosomes in this fraction indicates they are stalled, mainly in the hybrid state. Ribosome profiling of this fraction reveals (1) an enrichment for footprint reads of mRNAs that interact with FMRPs and are associated with stalled polysomes, (2) an abundance of footprint reads derived from mRNAs of cytoskeletal proteins implicated in neuronal development, and (3) increased ribosome occupancy on mRNAs encoding RNA binding proteins. Compared with those usually found in ribosome profiling studies, the footprint reads were longer and were mapped to reproducible peaks in the mRNAs. These peaks were enriched in motifs previously associated with mRNAs cross-linked to FMRP in vivo, independently linking the ribosomes in the granule fraction to the ribosomes associated with FMRP in the cell. The data supports a model in which specific sequences in mRNAs act to stall ribosomes during translation elongation in neurons.SIGNIFICANCE STATEMENT Neurons send mRNAs to synapses in RNA granules, where they are not translated until an appropriate stimulus is given. Here, we characterize a granule fraction obtained from sucrose gradients and show that polysomes in this fraction are stalled on consensus sequences in a specific state of translational arrest with extended ribosome-protected fragments. This finding greatly increases our understanding of how neurons use specialized mechanisms to regulate translation and suggests that many studies on neuronal translation may need to be re-evaluated to include the large fraction of neuronal polysomes found in the pellet of sucrose gradients used to isolate polysomes.
Collapse
Affiliation(s)
- Mina N Anadolu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Senthilkumar Kailasam
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Konstanze Krimbacher
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck Austria Division of Biomedical Research, A-6020 Innsbruck, Austria
| | - Jewel T-Y Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Teodora Markova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Seyed M Jafarnejad
- Patrick G, Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
12
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
13
|
Luca CD, Gupta A, Bortvin A. Ribonucleoprotein condensation driven by retrotransposon LINE-1 sustains RNA integrity and translation in mouse spermatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523313. [PMID: 36712121 PMCID: PMC9882024 DOI: 10.1101/2023.01.09.523313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
|