1
|
Christoffer C, Kagaya Y, Verburgt J, Terashi G, Shin WH, Jain A, Sarkar D, Aderinwale T, Maddhuri Venkata Subramaniya SR, Wang X, Zhang Z, Zhang Y, Kihara D. Integrative Protein Assembly With LZerD and Deep Learning in CAPRI 47-55. Proteins 2025. [PMID: 40095385 DOI: 10.1002/prot.26818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
We report the performance of the protein complex prediction approaches of our group and their results in CAPRI Rounds 47-55, excluding the joint CASP Rounds 50 and 54, as well as the special COVID-19 Round 51. Our approaches integrated classical pipelines developed in our group as well as more recently developed deep learning pipelines. In the cases of human group prediction, we surveyed the literature to find information to integrate into the modeling, such as assayed interface residues. In addition to any literature information, generated complex models were selected by a rank aggregation of statistical scoring functions, by generative model confidence, or by expert inspection. In these CAPRI rounds, our human group successfully modeled eight interfaces and achieved the top quality level among the submissions for all of them, including two where no other group did. We note that components of our modeling pipelines have become increasingly unified within deep learning approaches. Finally, we discuss several case studies that illustrate successful and unsuccessful modeling using our approaches.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Rosen Center for Advanced Computing, Purdue University, West Lafayette, Indiana, USA
| | - Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- College of Medicine, Korea University, Seoul, South Korea
| | - Anika Jain
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | | | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Yuanyuan Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Saravanan V, Raouraoua N, Brysbaert G, Giordano S, Lensink MF, Cleri F, Blossey R. The 'very moment' when UDG recognizes a flipped-out uracil base in dsDNA. Sci Rep 2025; 15:7993. [PMID: 40055399 PMCID: PMC11889109 DOI: 10.1038/s41598-025-91705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025] Open
Abstract
Uracil-DNA glycosylase (UDG) is the first enzyme in the base-excision repair (BER) pathway, acting on uracil bases in DNA. How UDG finds its targets has not been conclusively resolved yet. Based on available structural and other experimental evidence, two possible pathways are under discussion. In one, the action of UDG on the DNA bases is believed to follow a 'pinch-push-pull' model, in which UDG generates the base-flip in an active manner. A second scenario is based on the exploitation of bases flipping out thermally from the DNA. Recent molecular dynamics (MD) studies of DNA in trinucleosome arrays have shown that base-flipping can be readily induced by the action of mechanical forces on DNA alone. This alternative mechanism could possibly enhance the probability for the second scenario of UDG-uracil interaction via the formation of a recognition complex of UDG with flipped-out base. In this work, we describe DNA structures with flipped-out uracil bases generated by MD simulations which we then subject to docking simulations with the UDG enzyme. Our results for the UDG-uracil recognition complex support the view that base-flipping induced by DNA mechanics can be a relevant mechanism of uracil base recognition by the UDG glycosylase in chromatin.
Collapse
Affiliation(s)
- Vinnarasi Saravanan
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Nessim Raouraoua
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Guillaume Brysbaert
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Stefano Giordano
- CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique, de Microélectronique et de Nanotechnologie, University of Lille, 59000, Lille, France
| | - Marc F Lensink
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Fabrizio Cleri
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, University of Lille, 59652, Villeneuve d'Ascq, France
| | - Ralf Blossey
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France.
| |
Collapse
|
3
|
Christoffer C, Harini K, Archit G, Kihara D. Assembly of Protein Complexes in and on the Membrane with Predicted Spatial Arrangement Constraints. J Mol Biol 2024; 436:168486. [PMID: 38336197 PMCID: PMC10942765 DOI: 10.1016/j.jmb.2024.168486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Gupta Archit
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Zhang Y, Wang X, Zhang Z, Huang Y, Kihara D. Assessment of Protein-Protein Docking Models Using Deep Learning. Methods Mol Biol 2024; 2780:149-162. [PMID: 38987469 DOI: 10.1007/978-1-0716-3985-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Protein-protein interactions are involved in almost all processes in a living cell and determine the biological functions of proteins. To obtain mechanistic understandings of protein-protein interactions, the tertiary structures of protein complexes have been determined by biophysical experimental methods, such as X-ray crystallography and cryogenic electron microscopy. However, as experimental methods are costly in resources, many computational methods have been developed that model protein complex structures. One of the difficulties in computational protein complex modeling (protein docking) is to select the most accurate models among many models that are usually generated by a docking method. This article reviews advances in protein docking model assessment methods, focusing on recent developments that apply deep learning to several network architectures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Yunhan Huang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Christoffer C, Harini K, Archit G, Kihara D. Assembly of Protein Complexes In and On the Membrane with Predicted Spatial Arrangement Constraints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563303. [PMID: 37961264 PMCID: PMC10634698 DOI: 10.1101/2023.10.20.563303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gupta Archit
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Fang X, Han J, Lou X, Lv Y, Zhang Y, Xu X, Lv Z, Lu G. Effect and Mode of Different Concentrations of Citrus Peel Extract Treatment on Browning of Fresh-Cut Sweetpotato. Foods 2023; 12:3855. [PMID: 37893748 PMCID: PMC10606584 DOI: 10.3390/foods12203855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Browning is one of the main phenomena limiting the production of fresh-cut sweetpotatoes. This study investigated the anti-browning effect of citrus peel extracts and the key components and modes of action associated with browning in fresh-cut sweetpotatoes. Five different concentrations of citrus peel extract (1, 1.5, 2, 2.5 and 3 g/L) were selected to ensure storage quality; and the physical and chemical properties of fresh-cut sweetpotato slices were analysed. A concentration of 2 g/L of citrus peel extract significantly inhibited the browning of fresh-cut sweetpotatoes. The results showed that the browning index and textural characteristics of fresh-cut sweetpotatoes improved significantly after treatment with citrus peel extract; all the citrus peel extract solutions inhibited browning to some extent compared to the control. In addition; LC-IMS-QTOFMS analysis revealed a total of 1366 components in citrus peel extract; the evaluation of citrus peel extract monomeric components that prevent browning in fresh-cut sweetpotato indicated that the components with better anti-browning effects were citrulloside, hesperidin, sage secondary glycosides, isorhamnetin and quercetin. The molecular docking results suggest that citrullosides play a key role in the browning of fresh-cut sweetpotatoes. In this study, the optimum amount of citrus peel extract concentration was found to be 2 g/L.
Collapse
Affiliation(s)
- Xiugui Fang
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China; (X.F.); (Y.L.)
| | - Jiahui Han
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.H.)
| | - Xuefen Lou
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.H.)
| | - You Lv
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China; (X.F.); (Y.L.)
| | - Yilu Zhang
- Institute of Root & Tuber Crops, Modern Agriculture College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Z.); (Z.L.)
| | - Ximing Xu
- Institute of Root & Tuber Crops, Modern Agriculture College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Z.); (Z.L.)
| | - Zunfu Lv
- Institute of Root & Tuber Crops, Modern Agriculture College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Z.); (Z.L.)
| | - Guoquan Lu
- Institute of Root & Tuber Crops, Modern Agriculture College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Z.); (Z.L.)
| |
Collapse
|
7
|
Christoffer C, Kihara D. Modeling protein-nucleic acid complexes with extremely large conformational changes using Flex-LZerD. Proteomics 2023; 23:e2200322. [PMID: 36529945 PMCID: PMC10448949 DOI: 10.1002/pmic.202200322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Proteins and nucleic acids are key components in many processes in living cells, and interactions between proteins and nucleic acids are often crucial pathway components. In many cases, large flexibility of proteins as they interact with nucleic acids is key to their function. To understand the mechanisms of these processes, it is necessary to consider the 3D atomic structures of such protein-nucleic acid complexes. When such structures are not yet experimentally determined, protein docking can be used to computationally generate useful structure models. However, such docking has long had the limitation that the consideration of flexibility is usually limited to small movements or to small structures. We previously developed a method of flexible protein docking which could model ordered proteins which undergo large-scale conformational changes, which we also showed was compatible with nucleic acids. Here, we elaborate on the ability of that pipeline, Flex-LZerD, to model specifically interactions between proteins and nucleic acids, and demonstrate that Flex-LZerD can model more interactions and types of conformational change than previously shown.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Wodak SJ, Velankar S. Structural biology: The transformational era. Proteomics 2023; 23:e2200084. [PMID: 37667815 DOI: 10.1002/pmic.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Affiliation(s)
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| |
Collapse
|
9
|
Harini K, Kihara D, Michael Gromiha M. PDA-Pred: Predicting the binding affinity of protein-DNA complexes using machine learning techniques and structural features. Methods 2023; 213:10-17. [PMID: 36924867 PMCID: PMC10563387 DOI: 10.1016/j.ymeth.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Protein-DNA interactions play an important role in various biological processes such as gene expression, replication, and transcription. Understanding the important features that dictate the binding affinity of protein-DNA complexes and predicting their affinities is important for elucidating their recognition mechanisms. In this work, we have collected the experimental binding free energy (ΔG) for a set of 391 Protein-DNA complexes and derived several structure-based features such as interaction energy, contact potentials, volume and surface area of binding site residues, base step parameters of the DNA and contacts between different types of atoms. Our analysis on relationship between binding affinity and structural features revealed that the important factors mainly depend on the number of DNA strands as well as functional and structural classes of proteins. Specifically, binding site properties such as number of atom contacts between the DNA and protein, volume of protein binding sites and interaction-based features such as interaction energies and contact potentials are important to understand the binding affinity. Further, we developed multiple regression equations for predicting the binding affinity of protein-DNA complexes belonging to different structural and functional classes. Our method showed an average correlation and mean absolute error of 0.78 and 0.98 kcal/mol, respectively, between the experimental and predicted binding affinities on a jack-knife test. We have developed a webserver, PDA-PreD (Protein-DNA Binding affinity predictor), for predicting the affinity of protein-DNA complexes and it is freely available at https://web.iitm.ac.in/bioinfo2/pdapred/.
Collapse
Affiliation(s)
- K Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|