1
|
Wang S, Bao C, Yang S, Gao C, Lu C, Jiang L, Chen L, Wang Z, Fang H. XGRm: A Web Server for Interpreting Mouse Summary-level Genomic Data. J Mol Biol 2024; 436:168705. [PMID: 39237194 DOI: 10.1016/j.jmb.2024.168705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 09/07/2024]
Abstract
We introduce XGR-model (or XGRm), a web server made accessible at http://www.xgrm.pro, with the aim of meeting the increasing demand for effectively interpreting summary-level genomic data in model organisms. Currently, it hosts two enrichment analysers and two subnetwork analysers to support enrichment and subnetwork analyses for user-input mouse genomic data, whether gene-centric or genomic region-centric. The enrichment analysers identify ontology term enrichments for input genes (GElyser) or for genes linked from input genomic regions (RElyser). The subnetwork analysers rely on our previously established network algorithm to identify gene subnetworks from input gene-centric summary data (GSlyser) or from input region-centric summary data (RSlyser), leveraging network information about either functional interactions or pathway-derived interactions. Collectively, XGRm offers an all-in-one solution for gaining systems biology insights into summary-level genomic data in mice, underpinned by our commitment to regular updates as well as natural extensions to other model organisms.
Collapse
Affiliation(s)
- Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Siyue Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxu Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Lu
- MRC Laboratory of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0HS, UK
| | - Lulu Jiang
- Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Zheng Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037, China; Jinfeng Laboratory, Chongqing 401329, China; Bio-Med Informatics Research Center & Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Bao C, Tan T, Wang S, Gao C, Lu C, Yang S, Diao Y, Jiang L, Jing D, Chen L, Lv H, Fang H. A cross-disease, pleiotropy-driven approach for therapeutic target prioritization and evaluation. CELL REPORTS METHODS 2024; 4:100757. [PMID: 38631345 PMCID: PMC11046034 DOI: 10.1016/j.crmeth.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/08/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Cross-disease genome-wide association studies (GWASs) unveil pleiotropic loci, mostly situated within the non-coding genome, each of which exerts pleiotropic effects across multiple diseases. However, the challenge "W-H-W" (namely, whether, how, and in which specific diseases pleiotropy can inform clinical therapeutics) calls for effective and integrative approaches and tools. We here introduce a pleiotropy-driven approach specifically designed for therapeutic target prioritization and evaluation from cross-disease GWAS summary data, with its validity demonstrated through applications to two systems of disorders (neuropsychiatric and inflammatory). We illustrate its improved performance in recovering clinical proof-of-concept therapeutic targets. Importantly, it identifies specific diseases where pleiotropy informs clinical therapeutics. Furthermore, we illustrate its versatility in accomplishing advanced tasks, including pathway crosstalk identification and downstream crosstalk-based analyses. To conclude, our integrated solution helps bridge the gap between pleiotropy studies and therapeutics discovery.
Collapse
Affiliation(s)
- Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxu Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Lu
- MRC London Institute of Medical Sciences, Imperial College London, W12 0HS London, UK
| | - Siyue Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yizhu Diao
- College of Finance and Statistics, Hunan University, Changsha, Hunan 410079, China
| | - Lulu Jiang
- Translational Health Sciences, University of Bristol, BS1 3NY Bristol, UK
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OX3 7LD Oxford, UK.
| | - Haitao Lv
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Chinese Medicine, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Chinese Medicine Phenome Research Center, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Bao C, Wang S, Jiang L, Fang Z, Zou K, Lin J, Chen S, Fang H. OpenXGR: a web-server update for genomic summary data interpretation. Nucleic Acids Res 2023; 51:W387-W396. [PMID: 37158276 PMCID: PMC10320191 DOI: 10.1093/nar/gkad357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
How to effectively convert genomic summary data into downstream knowledge discovery represents a major challenge in human genomics research. To address this challenge, we have developed efficient and effective approaches and tools. Extending our previously established software tools, we here introduce OpenXGR (http://www.openxgr.com), a newly designed web server that offers almost real-time enrichment and subnetwork analyses for a user-input list of genes, SNPs or genomic regions. It achieves so through leveraging ontologies, networks, and functional genomic datasets (such as promoter capture Hi-C, e/pQTL and enhancer-gene maps for linking SNPs or genomic regions to candidate genes). Six analysers are provided, each doing specific interpretations tailored to genomic summary data at various levels. Three enrichment analysers are designed to identify ontology terms enriched for input genes, as well as genes linked from input SNPs or genomic regions. Three subnetwork analysers allow users to identify gene subnetworks from input gene-, SNP- or genomic region-level summary data. With a step-by-step user manual, OpenXGR provides a user-friendly and all-in-one platform for interpreting summary data on the human genome, enabling more integrated and effective knowledge discovery.
Collapse
Affiliation(s)
- Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Lulu Jiang
- Translational Health Sciences, University of Bristol, BristolBS1 3NY, UK
| | - Zhongcheng Fang
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Kexin Zou
- School of Life Sciences, Central South University, Hunan410083, China
| | - James Lin
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai200240, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|