1
|
van Stokkum IH, Dostal J, Do TN, Fu L, Madej G, Ziegler C, Hegemann P, Kloz M, Broser M, Kennis JTM. Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer. J Am Chem Soc 2025; 147:14468-14480. [PMID: 40245178 PMCID: PMC12046560 DOI: 10.1021/jacs.5c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Neorhodopsin (NeoR) is a newly discovered fungal bistable rhodopsin that reversibly photoswitches between UV- and near-IR absorbing states denoted NeoR367 and NeoR690, respectively. NeoR367 represents a deprotonated retinal Schiff base (RSB), while NeoR690 represents a protonated RSB. Cryo-EM studies indicate that NeoR forms homodimers with 29 Å center-to-center distance between the retinal chromophores. UV excitation of NeoR367 takes place to an optically allowed S3 state of 1Bu+ symmetry, which rapidly converts to a low-lying optically forbidden S1 state of 2Ag- symmetry in 39 fs, followed by a multiexponential decay to the ground state on the 1-100 ps time scale. A theoretically predicted nπ* (S2) state does not get populated in any appreciable transient concentration during the excited-state relaxation cascade. We observe an intradimer retinal to retinal excitation energy transfer (EET) process from the NeoR367 S1 state to NeoR690, in competition with photoproduct formation. To quantitatively assess the EET mechanism and rate, we experimentally addressed and modeled the EET process under varying NeoR367-NeoR690 photoequilibrium conditions and determined the EET rate at (200 ps)-1. The NeoR367 S1 state shows a weak stimulated emission band in the near-IR around 700 nm, which may result from mixing with an intramolecular charge-transfer (ICT) state, enhancing the transition dipole moment of the S1-S0 transition and possibly facilitating the EET process. We suggest that EET may bear general relevance to the function of bistable multiwavelength rhodopsin oligomers.
Collapse
Affiliation(s)
- Ivo H.
M. van Stokkum
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Jakub Dostal
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí
835, 25241 Dolní
Břežany, Czech Republic
| | - Thanh Nhut Do
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Lifei Fu
- Department
of Structural Biology/Biophysics II, University
of Regensburg, DE-93053 Regensburg, Germany
| | - Gregor Madej
- Department
of Structural Biology/Biophysics II, University
of Regensburg, DE-93053 Regensburg, Germany
| | - Christine Ziegler
- Department
of Structural Biology/Biophysics II, University
of Regensburg, DE-93053 Regensburg, Germany
| | - Peter Hegemann
- Institut
für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Miroslav Kloz
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí
835, 25241 Dolní
Břežany, Czech Republic
| | - Matthias Broser
- Institut
für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Brown LS. An affordable convertible: Engineering proton transfer pathways in microbial rhodopsins. Biophys J 2024; 123:4147-4149. [PMID: 39175197 DOI: 10.1016/j.bpj.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Sugimoto T, Katayama K, Kandori H. FTIR study of light-induced proton transfer and Ca 2+ binding in T82D mutant of TAT rhodopsin. Biophys J 2024; 123:4245-4255. [PMID: 39118325 DOI: 10.1016/j.bpj.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Proton transfer reactions play important functional roles in many proteins, such as enzymes and transporters, which is also the case in rhodopsins. In fact, functional expression of rhodopsins accompanies intramolecular proton transfer reactions in many cases. One of the exceptional cases can be seen in the protonated form of marine bacterial TAT rhodopsin, which isomerizes the retinal by light but returns to the original state within 10-5 s. Thus, light energy is converted into heat without any function. In contrast, the T82D mutant of TAT rhodopsin conducts the light-induced deprotonation of the Schiff base at high pH. In this article, we report the structural analysis of T82D by means of difference Fourier transform infrared (FTIR) spectroscopy. In the light-induced difference FTIR spectra at 77 K, we observed little hydrogen out-of-plane vibrations for T82D as well as the wild-type (WT), suggesting that the planar chromophore structure itself is not the origin of the reversion from the K intermediate in WT TAT rhodopsin. Upon relaxation of the K intermediate, T82D forms the following intermediate, such as M, whereas K of WT returns to the original state. Present FTIR analysis revealed the proton transfer from the Schiff base to D82 in T82D upon formation of the M intermediate. It is accompanied by the second proton transfer from E54 to the Schiff base, forming the N intermediate, particularly in membranes. The equilibrium between the M and N intermediates corresponds to the protonation equilibrium between E54 and the Schiff base. We also found that Ca2+ binding takes place in T82D as well as WT but with 6 times lower affinity. An altered hydrogen-bonding network would be the origin of low affinity in T82D, where deprotonation of E54 is involved in the Ca2+ binding.
Collapse
Affiliation(s)
- Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
4
|
Bertalan É, Konno M, Del Carmen Marín M, Bagherzadeh R, Nagata T, Brown L, Inoue K, Bondar AN. Hydrogen-Bonding and Hydrophobic Interaction Networks as Structural Determinants of Microbial Rhodopsin Function. J Phys Chem B 2024; 128:7407-7426. [PMID: 39024507 DOI: 10.1021/acs.jpcb.4c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microbial pump rhodopsins are highly versatile light-driven membrane proteins that couple protein conformational dynamics with ion translocation across the cell membranes. Understanding how microbial pump rhodopsins use specific amino acid residues at key functional sites to control ion selectivity and ion pumping direction is of general interest for membrane transporters, and could guide site-directed mutagenesis for optogenetics applications. To enable direct comparisons between proteins with different sequences we implement, for the first time, a unique numbering scheme for the microbial pump rhodopsin residues, NS-mrho. We use NS-mrho to show that distinct microbial pump rhodopsins typically have hydrogen-bond networks that are less conserved than anticipated from the amino acid residue conservation, whereas their hydrophobic interaction networks are largely conserved. To illustrate the role of the hydrogen-bond networks as structural elements that determine the functionality of microbial pump rhodopsins, we performed experiments, atomic-level simulations, and hydrogen bond network analyses on GR, the outward proton pump from Gloeobacter violaceus, and KR2, the outward sodium pump from Krokinobacter eikastus. The experiments indicate that multiple mutations that recover KR2 amino acid residues in GR not only fail to convert it into a sodium pump, but completely inactivate GR by abolishing photoisomerization of the retinal chromophore. This observation could be attributed to the drastically altered hydrogen-bond interaction network identified with simulations and network analyses. Taken together, our findings suggest that functional specificity could be encoded in the collective hydrogen-bond network of microbial pump rhodopsins.
Collapse
Affiliation(s)
- Éva Bertalan
- Department of Mathematics and Natural Sciences, RWTH Aachen University, Templergraben 59, 52062 Aachen, Germany
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - María Del Carmen Marín
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Reza Bagherzadeh
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Leonid Brown
- Department of Physics, University of Guelph, 488 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa 277-8581, Chiba, Japan
| | - Ana-Nicoleta Bondar
- Institute of Computational Biomedicine, Forschungszentrum Jülich, IAS-5/INM-9, Wilhelm-Johnen Straße, 5428 Jülich, Germany
- Faculty of Physics, University of Bucharest, Atomiştilor 405, 077125 Măgurele, Romania
| |
Collapse
|
5
|
Sugimoto T, Miyagawa K, Shoji M, Katayama K, Shigeta Y, Kandori H. Calcium Binding Mechanism in TAT Rhodopsin. J Phys Chem B 2024; 128:7102-7111. [PMID: 39012779 DOI: 10.1021/acs.jpcb.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
TAT rhodopsin binds Ca2+ near the Schiff base region, which accompanies deprotonation of the Schiff base. This paper reports the Ca2+-free and Ca2+-bound structures of TAT rhodopsin by molecular dynamics (MD) simulation launched from AlphaFold structures. In the Ca2+-bound TAT rhodopsin, Ca2+ is directly coordinated by eight oxygen atoms, four oxygens of the side chains of E54 and D227, and four oxygens of water molecules. E54 is not involved in the hydrogen-bonding network of the Ca2+-free TAT rhodopsin, while flipping motion of E54 allows Ca2+ binding to TAT rhodopsin with deformation of helices observed by FTIR spectroscopy. The hydrogen-bonding network plays a crucial role in maintaining the Ca2+ binding, as mutations of E54, Y55, R79, Y200, E220, and D227 abolished the binding. Only T82V exhibited the Ca2+ binding like the wild type among the mutants in this study. The molecular mechanism of Ca2+ binding is discussed based on the present computational and experimental analysis.
Collapse
Affiliation(s)
- Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Koichi Miyagawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Chukhutsina VU, Kennis JTM. Photosensory Receptors - Mechanisms and Effects. J Mol Biol 2024; 436:168488. [PMID: 38341173 DOI: 10.1016/j.jmb.2024.168488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Affiliation(s)
- Volha U Chukhutsina
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|