1
|
Cooper BG, DeMoya CD, Sikes KJ, Frisbie DD, Phillips N, Nelson BB, McIlwraith CW, Kawcak CE, Goodrich LR, Snyder BD, Grinstaff MW. A polymer network architecture provides superior cushioning and lubrication of soft tissue compared to a linear architecture. Biomater Sci 2023; 11:7339-7345. [PMID: 37847186 PMCID: PMC11500756 DOI: 10.1039/d3bm00753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We report the relationships between linear vs. network polymer architecture and biomechanical outcomes including lubrication and cushioning when the polymers are applied to the surface of articulating knee cartilage. Aqueous formulations of the bioinspired polymer poly(2-methacryloyloxylethyl phosphorylcholine) (pMPC) exhibit tuneable rheological properties, with network pMPC exhibiting increased elasticity and viscosity compared to linear pMPC. Application of a polymer network, compared to a linear one, to articulating tissue surfaces reduces friction, lessens tissue strain, minimizes wear, and protects tissue - thereby improving overall tissue performance. Administration of the network pMPC to the middle carpal joint of skeletally mature horses elicits a safe response similar to saline as monitored over a 70 day period.
Collapse
Affiliation(s)
- Benjamin G Cooper
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- Center for Advanced Orthopedic Studies (CAOS), Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Christian D DeMoya
- Center for Advanced Orthopedic Studies (CAOS), Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Katie J Sikes
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - David D Frisbie
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Nikki Phillips
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brad B Nelson
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - C Wayne McIlwraith
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Chris E Kawcak
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Laurie R Goodrich
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brian D Snyder
- Center for Advanced Orthopedic Studies (CAOS), Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Orthopedic Surgery, Boston Childrens Hospital, Boston, MA, 02215, USA.
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
2
|
van Andel E, Roosjen M, van der Zanden S, Lange SC, Weijers D, Smulders MMJ, Savelkoul HFJ, Zuilhof H, Tijhaar EJ. Highly Specific Protein Identification by Immunoprecipitation-Mass Spectrometry Using Antifouling Microbeads. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23102-23116. [PMID: 35536557 PMCID: PMC9136845 DOI: 10.1021/acsami.1c22734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
A common method to study protein complexes is immunoprecipitation (IP), followed by mass spectrometry (thus labeled: IP-MS). IP-MS has been shown to be a powerful tool to identify protein-protein interactions. It is, however, often challenging to discriminate true protein interactors from contaminating ones. Here, we describe the preparation of antifouling azide-functionalized polymer-coated beads that can be equipped with an antibody of choice via click chemistry. We show the preparation of generic immunoprecipitation beads that target the green fluorescent protein (GFP) and show how they can be used in IP-MS experiments targeting two different GFP-fusion proteins. Our antifouling beads were able to efficiently identify relevant protein-protein interactions but with a strong reduction in unwanted nonspecific protein binding compared to commercial anti-GFP beads.
Collapse
Affiliation(s)
- Esther van Andel
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Cell
Biology and Immunology group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Mark Roosjen
- Laboratory
of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Stef van der Zanden
- Cell
Biology and Immunology group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Stefanie C. Lange
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory
of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Huub F. J. Savelkoul
- Cell
Biology and Immunology group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
- Department
of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Edwin J. Tijhaar
- Cell
Biology and Immunology group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| |
Collapse
|
3
|
Hosoi T, Hasegawa M, Tone S, Nakasone S, Kishida N, Marin E, Zhu W, Pezzotti G, Sudo A. MPC
‐grafted highly cross‐linked polyethylene liners retrieved from short‐term total hip arthroplasty: Further evidences for the unsuitability of the
MPC
method. J Biomed Mater Res B Appl Biomater 2020; 108:2857-2867. [DOI: 10.1002/jbm.b.34617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/09/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Takashi Hosoi
- Department of Orthopedic Surgery, Graduate School of Medicine Mie University Tsu City Mie Japan
| | - Masahiro Hasegawa
- Department of Orthopedic Surgery, Graduate School of Medicine Mie University Tsu City Mie Japan
| | - Shine Tone
- Department of Orthopedic Surgery, Graduate School of Medicine Mie University Tsu City Mie Japan
| | - Satoshi Nakasone
- Department of Orthopedic Surgery, Graduate School of Medicine University of the Ryukyus Nakagami‐gun Okinawa Japan
| | - Narifumi Kishida
- Ceramic Physics Laboratory Kyoto Institute of Technology Kyoto Japan
| | - Elia Marin
- Ceramic Physics Laboratory Kyoto Institute of Technology Kyoto Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory Kyoto Institute of Technology Kyoto Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory Kyoto Institute of Technology Kyoto Japan
- Department of Orthopedic Surgery Tokyo Medical University Tokyo Japan
- The Center for Advanced Medical Engineering and Informatics Osaka University Osaka Japan
- Department of Immunology, Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Graduate School of Medicine Mie University Tsu City Mie Japan
| |
Collapse
|
4
|
Bian YY, Zhou L, Zhou G, Jin ZM, Xin SX, Hua ZK, Weng XS. Study on biocompatibility, tribological property and wear debris characterization of ultra-low-wear polyethylene as artificial joint materials. J Mech Behav Biomed Mater 2018; 82:87-94. [DOI: 10.1016/j.jmbbm.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
5
|
Pezzotti G. Raman spectroscopy of biomedical polyethylenes. Acta Biomater 2017; 55:28-99. [PMID: 28359859 DOI: 10.1016/j.actbio.2017.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022]
Abstract
With the development of three-dimensional Raman algorithms for local mapping of oxidation and plastic strain, and the ability to resolve molecular orientation patterns with microscopic spatial resolution, there is an opportunity to re-examine many of the foundations on which our understanding of biomedical grade ultra-high molecular weight polyethylenes (UHMWPEs) are based. By implementing polarized Raman spectroscopy into an automatized tool with an improved precision in non-destructively resolving Euler angles, oxidation levels, and microscopic strain, we become capable to make accurate and traceable measurements of the in vitro and in vivo tribological responses of a variety of commercially available UHMWPE bearings for artificial hip and knee joints. In this paper, we first review the foundations and the main algorithms for Raman analyses of oxidation and strain of biomedical polyethylene. Then, we critically re-examine a large body of Raman data previously collected on different polyethylene joint components after in vitro testing or in vivo service, in order to shed new light on an area of particular importance to joint orthopedics: the microscopic nature of UHMWPE surface degradation in the human body. A complex scenario of physical chemistry appears from the Raman analyses, which highlights the importance of molecular-scale phenomena besides mere microstructural changes. The availability of the Raman microscopic probe for visualizing oxidation patterns unveiled striking findings related to the chemical contribution to wear degradation: chain-breaking and subsequent formation of carboxylic acid sites preferentially occur in correspondence of third-phase regions, and they are triggered by emission of dehydroxylated oxygen from ceramic oxide counterparts. These findings profoundly differ from more popular (and simplistic) notions of mechanistic tribology adopted in analyzing joint simulator data. Statement of Significance This review was dedicated to the theoretical and experimental evaluation of the commercially available biomedical polyethylene samples by Raman spectroscopy with regard to their molecular textures, oxidative patterns, and plastic strain at the microscopic level in the three dimensions of the Euclidean space. The main achievements could be listed, as follow: (i) visualization of molecular patterns at the surface of UHMWPE bearings operating against metallic components; (ii) differentiation between wear and creep deformation in retrievals; (iii) non-destructive mapping of oxidative patterns; and, (iv) the clarification of chemical interactions between oxide/non-oxide ceramic heads and advanced UHMWPE liners.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan; Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, 565-0871 Osaka, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, 602-0841 Kyoto, Japan.
| |
Collapse
|
6
|
|
7
|
ODZIOMEK KATARZYNA, USHIZIMA DANIELA, OBERBEK PRZEMYSLAW, KURZYDŁOWSKI KRZYSZTOFJAN, PUZYN TOMASZ, HARANCZYK MACIEJ. Scanning electron microscopy image representativeness: morphological data on nanoparticles. J Microsc 2016; 265:34-50. [DOI: 10.1111/jmi.12461] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/25/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Affiliation(s)
- KATARZYNA ODZIOMEK
- Laboratory of Environmental Chemometrics, Faculty of Chemistry University of Gdansk Gdansk Poland
- Computational Research Division Lawrence Berkeley National Laboratory Berkeley California U.S.A
| | - DANIELA USHIZIMA
- Computational Research Division Lawrence Berkeley National Laboratory Berkeley California U.S.A
| | - PRZEMYSLAW OBERBEK
- Materials Design Division Faculty of Materials Science and Engineering Warsaw University of Technology Warsaw Poland
| | - KRZYSZTOF JAN KURZYDŁOWSKI
- Materials Design Division Faculty of Materials Science and Engineering Warsaw University of Technology Warsaw Poland
| | - TOMASZ PUZYN
- Laboratory of Environmental Chemometrics, Faculty of Chemistry University of Gdansk Gdansk Poland
| | - MACIEJ HARANCZYK
- Computational Research Division Lawrence Berkeley National Laboratory Berkeley California U.S.A
| |
Collapse
|
8
|
Beddoes CM, Whitehouse MR, Briscoe WH, Su B. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E443. [PMID: 28773566 PMCID: PMC5456752 DOI: 10.3390/ma9060443] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022]
Abstract
Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.
Collapse
Affiliation(s)
- Charlotte M Beddoes
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| | - Michael R Whitehouse
- Musculoskeletal Research Unit, University of Bristol, Level 1 Learning and Research Building, Bristol BS10 5NB, UK.
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Bo Su
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|
9
|
Takatori Y, Moro T, Ishihara K, Kamogawa M, Oda H, Umeyama T, Kim YT, Ito H, Kyomoto M, Tanaka T, Kawaguchi H, Tanaka S. Clinical and radiographic outcomes of total hip replacement with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners: Three-year results of a prospective consecutive series. Mod Rheumatol 2014; 25:286-91. [DOI: 10.3109/14397595.2014.941438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Kakinoki S, Sakai Y, Takemura T, Hanagata N, Fujisato T, Ishihara K, Yamaoka T. Gene chip/PCR-array analysis of tissue response to 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer surfaces in a mouse subcutaneous transplantation system. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1658-72. [DOI: 10.1080/09205063.2014.939917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
ZHANG ZHIQIANG, FANG YONGCHAO, WANG QIANG, SUN YU, XIONG CHUANZHI, CAO LI, WANG BEIYUE, BAO NIRONG, ZHAO JIANNING. Tumor necrosis factor-like weak inducer of apoptosis regulates particle-induced inflammatory osteolysis via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep 2012; 12:1499-505. [DOI: 10.3892/mmr.2015.3529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 01/23/2015] [Indexed: 11/06/2022] Open
|