1
|
Guo Y, Yang J, Xue J, Yang J, Liu S, Zhang X, Yao Y, Quan A, Zhang Y. Hemodynamic effects of bifurcation and stenosis geometry on carotid arteries with different degrees of stenosis. Physiol Meas 2024; 45:125006. [PMID: 39652970 DOI: 10.1088/1361-6579/ad9c13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Objective.Carotid artery stenosis (CAS) is a key factor in pathological conditions, such as thrombosis, which is closely linked to hemodynamic parameters. Existing research often focuses on analyzing the influence of geometric characteristics at the stenosis site, making it difficult to predict the effects of overall vascular geometry on hemodynamic parameters. The objective of this study is to comprehensively examine the influence of geometric morphology at different degrees of CAS and at bifurcation sites on hemodynamic parameters.Approach.A three-dimensional model is established using computed tomography angiography images, and eight geometric parameters of each patient are measured by MIMICS. Then, computational fluid dynamics is utilized to investigate 60 patients with varying degrees of stenosis (10%-95%). Time and grid tests are conducted to optimize settings, and results are validated through comparison with reference calculations. Subsequently, correlation analysis using SPSS is performed to examine the relationship between the eight geometric parameters and four hemodynamic parameters. In MATLAB, prediction models for the four hemodynamic parameters are developed using back propagation neural networks (BPNN) and multiple linear regression.Main results.The BPNN model significantly outperforms the multiple linear regression model, reducing mean absolute error, mean squared error, and root mean squared error by 91.7%, 93.9%, and 75.5%, respectively, and increasingR2from 19.0% to 88.0%. This greatly improves fitting accuracy and reduces errors. This study elucidates the correlation and patterns of geometric parameters of vascular stenosis and bifurcation in evaluating hemodynamic parameters of CAS.Significance.This study opens up new avenues for improving the diagnosis, treatment, and clinical management strategies of CAS.
Collapse
Affiliation(s)
- Yuxin Guo
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| | - Jianbao Yang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| | - Junzhen Xue
- Health Management Faculty, Xianning Vocational and Technical College, Xianning 437100, People's Republic of China
| | - Jingxi Yang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| | - Siyu Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| | - XueLian Zhang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| | - Yixin Yao
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| | - Anlong Quan
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| | - Yang Zhang
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| |
Collapse
|
2
|
Petřivý Z, Horný L, Tichý P. Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta. Biomech Model Mechanobiol 2024; 23:1837-1849. [PMID: 38985231 PMCID: PMC11554823 DOI: 10.1007/s10237-024-01871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.
Collapse
Affiliation(s)
- Zdeněk Petřivý
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Lukáš Horný
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic.
| | - Petr Tichý
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| |
Collapse
|
3
|
Bao H, Li ZT, Xu LH, Su TY, Han Y, Bao M, Liu Z, Fan YJ, Lou Y, Chen Y, Jiang ZL, Gong XB, Qi YX. Platelet-Derived Extracellular Vesicles Increase Col8a1 Secretion and Vascular Stiffness in Intimal Injury. Front Cell Dev Biol 2021; 9:641763. [PMID: 33738288 PMCID: PMC7960786 DOI: 10.3389/fcell.2021.641763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
The arterial mechanical microenvironment, including stiffness, is a crucial pathophysiological feature of vascular remodeling, such as neointimal hyperplasia after carotid endarterectomy and balloon dilatation surgeries. In this study, we examined changes in neointimal stiffness in a Sprague-Dawley rat carotid artery intimal injury model and revealed that extracellular matrix (ECM) secretion and vascular stiffness were increased. Once the endothelial layer is damaged in vivo, activated platelets adhere to the intima and may secrete platelet-derived extracellular vesicles (pEVs) and communicate with vascular smooth muscle cells (VSMCs). In vitro, pEVs stimulated VSMCs to promote collagen secretion and cell adhesion. MRNA sequencing analysis of a carotid artery intimal injury model showed that ECM factors, including col8a1, col8a2, col12a1, and elastin, were upregulated. Subsequently, ingenuity pathway analysis (IPA) was used to examine the possible signaling pathways involved in the formation of ECM, of which the Akt pathway played a central role. In vitro, pEVs activated Akt signaling through the PIP3 pathway and induced the production of Col8a1. MicroRNA (miR) sequencing of pEVs released from activated platelets revealed that 14 of the top 30 miRs in pEVs targeted PTEN, which could promote the activation of the Akt pathway. Further research showed that the most abundant miR targeting PTEN was miR-92a-3p, which promoted Col8a1 expression. Interestingly, knockdown of Col8a1 expression in vivo abrogated the increase in carotid artery stiffness and simultaneously increased the degree of neointimal hyperplasia. Our results revealed that pEVs may deliver miR-92a-3p to VSMCs to induce the production and secretion of Col8a1 via the PTEN/PIP3/Akt pathway, subsequently increasing vascular stiffness. Therefore, pEVs and key molecules may be potential therapeutic targets for treating neointimal hyperplasia.
Collapse
Affiliation(s)
- Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Tong Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei-Han Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Tong-Yue Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Jing Fan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lou
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Gong
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
4
|
Wang R, Yu X, Zhang Y. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall. Biomech Model Mechanobiol 2020; 20:93-106. [PMID: 32705413 DOI: 10.1007/s10237-020-01370-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
The artery relies on interlamellar structural components, mainly elastin and collagen fibers, for maintaining its integrity and resisting dissection propagation. In this study, the contribution of arterial elastin and collagen fibers to interlamellar bonding was studied through mechanical testing, multiphoton imaging and finite element modeling. Steady-state peeling experiments were performed on porcine aortic media and the purified elastin network in the circumferential (Circ) and longitudinal (Long) directions. The peeling force and energy release rate associated with mode-I failure are much higher for aortic media than for the elastin network. Also, longitudinal peeling exhibits a higher energy release rate and strength than circumferential peeling for both the aortic media and elastin. Multiphoton imaging shows the recruitment of both elastin and collagen fibers within the interlamellar space and points to in-plane anisotropy of fiber distributions as a potential mechanism for the direction-dependent phenomena of peeling tests. Three-dimensional finite element models based on cohesive zone model (CZM) of fracture were created to simulate the peeling tests with the interlamellar energy release rate and separation distance at damage initiation obtained directly from peeling test. Our experimental results show that the separation distance at damage initiation is 80 μm for aortic media and 40 μm for elastin. The damage initiation stress was estimated from the model for aortic media (Circ: 60 kPa; Long: 95 kPa) and elastin (Circ: 9 kPa; Long: 14 kPa). The interlamellar separation distance at complete failure was estimated to be 3 - 4 mm for both media and elastin. Furthermore, elastin and collagen fibers both play an important role in bonding of the arterial wall, while collagen has a higher contribution than elastin to interlamellar stiffness, strength and toughness. These results on microstructural interlamellar failure shed light on the pathological development and progression of aortic dissection.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Xunjie Yu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA. .,Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA. .,Divison of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Azar D, Torres WM, Davis LA, Shaw T, Eberth JF, Kolachalama VB, Lessner SM, Shazly T. Geometric determinants of local hemodynamics in severe carotid artery stenosis. Comput Biol Med 2019; 114:103436. [PMID: 31521900 DOI: 10.1016/j.compbiomed.2019.103436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/30/2023]
Abstract
In cases of severe carotid artery stenosis (CAS), carotid endarterectomy (CEA) is performed to recover lumen patency and alleviate stroke risk. Under current guidelines, the decision to surgically intervene relies primarily on the percent loss of native arterial lumen diameter within the stenotic region (i.e. the degree of stenosis). An underlying premise is that the degree of stenosis modulates flow-induced wall shear stress elevations at the lesion site, and thus indicates plaque rupture potential and stroke risk. Here, we conduct a retrospective study on pre-CEA computed tomography angiography (CTA) images from 50 patients with severe internal CAS (>60% stenosis) to better understand the influence of plaque and local vessel geometry on local hemodynamics, with geometrical descriptors that extend beyond the degree of stenosis. We first processed CTA images to define a set of multipoint geometric metrics characterizing the stenosed region, and next performed computational fluid dynamics simulations to quantify local wall shear stress and associated hemodynamic metrics. Correlation and regression analyses were used to relate obtained geometric and hemodynamic metrics, with inclusion of patient sub-classification based on the degree of stenosis. Our results suggest that in the context of severe CAS, prediction of shear stress-based metrics can be enhanced by consideration of readily available, multipoint geometric metrics in addition to the degree of stenosis.
Collapse
Affiliation(s)
- Dara Azar
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA
| | - William M Torres
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Exponent, Inc, Philadelphia, PA, USA
| | - Lindsey A Davis
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Taylor Shaw
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - John F Eberth
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Vijaya B Kolachalama
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Susan M Lessner
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Tarek Shazly
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Department of Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
6
|
Mousavi SJ, Farzaneh S, Avril S. Computational predictions of damage propagation preceding dissection of ascending thoracic aortic aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2944. [PMID: 29171175 DOI: 10.1002/cnm.2944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
Dissections of ascending thoracic aortic aneurysms (ATAAs) cause significant morbidity and mortality worldwide. They occur when a tear in the intima-media of the aorta permits the penetration of the blood and the subsequent delamination and separation of the wall in 2 layers, forming a false channel. To predict computationally the risk of tear formation, stress analyses should be performed layer-specifically and they should consider internal or residual stresses that exist in the tissue. In the present paper, we propose a novel layer-specific damage model based on the constrained mixture theory, which intrinsically takes into account these internal stresses and can predict appropriately the tear formation. The model is implemented in finite-element commercial software Abaqus coupled with user material subroutine. Its capability is tested by applying it to the simulation of different exemplary situations, going from in vitro bulge inflation experiments on aortic samples to in vivo overpressurizing of patient-specific ATAAs. The simulations reveal that damage correctly starts from the intimal layer (luminal side) and propagates across the media as a tear but never hits the adventitia. This scenario is typically the first stage of development of an acute dissection, which is predicted for pressures of about 2.5 times the diastolic pressure by the model after calibrating the parameters against experimental data performed on collected ATAA samples. Further validations on a larger cohort of patients should hopefully confirm the potential of the model in predicting patient-specific damage evolution and possible risk of dissection during aneurysm growth for clinical applications.
Collapse
Affiliation(s)
- S Jamaleddin Mousavi
- CIS-EMSE, Ecole des Mines de Saint-Étienne, F-42023 Saint-Étienne, France
- INSERM, U1059, SAINBIOSE, F-42023 Saint-Étienne, France
- Université de Lyon, F-69000 Lyon, France
| | - Solmaz Farzaneh
- CIS-EMSE, Ecole des Mines de Saint-Étienne, F-42023 Saint-Étienne, France
- INSERM, U1059, SAINBIOSE, F-42023 Saint-Étienne, France
- Université de Lyon, F-69000 Lyon, France
| | - Stéphane Avril
- CIS-EMSE, Ecole des Mines de Saint-Étienne, F-42023 Saint-Étienne, France
- INSERM, U1059, SAINBIOSE, F-42023 Saint-Étienne, France
- Université de Lyon, F-69000 Lyon, France
| |
Collapse
|