1
|
Anderson DE, Keko M, James J, Allaire BT, Kozono D, Doyle PF, Kang H, Caplan S, Balboni T, Spektor A, Huynh MA, Hackney DB, Alkalay RN. Metastatic spine disease alters spinal load-to-strength ratios in patients compared to healthy individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.25320075. [PMID: 39830276 PMCID: PMC11741471 DOI: 10.1101/2025.01.06.25320075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Pathologic vertebral fractures (PVF) are common and serious complications in patients with metastatic lesions affecting the spine. Accurate assessment of cancer patients' PVF risk is an unmet clinical need. Load-to-strength ratios (LSRs) evaluated in vivo by estimating vertebral loading from biomechanical modeling and strength from computed tomography imaging (CT) have been associated with osteoporotic vertebral fractures in older adults. Here, for the first time, we investigate LSRs of thoracic and lumbar vertebrae of 135 spine metastases patients compared to LSRs of 246 healthy adults, comparable by age and sex, from the Framingham Heart Study under four loading tasks. Findings include: (1) Osteolytic vertebrae have higher LSRs than osteosclerotic and mixed vertebrae; (2). In patients' vertebrae without CT observed metastases, LSRs were greater than healthy controls. (3) LSRs depend on the spinal region (Thoracic, Thoracolumbar, Lumbar). These findings suggest that LSRs may contribute to identifying patients at risk of incident PVF in metastatic spine disease patients. The lesion-mediated difference suggests that risk thresholds should be established based on spinal region, simulated task, and metastatic lesion type.
Collapse
Affiliation(s)
- Dennis E. Anderson
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA, USA
| | - Mario Keko
- Department of Orthopedics, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joanna James
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Brett T. Allaire
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - David Kozono
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick F Doyle
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Heejoo Kang
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sarah Caplan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tracy Balboni
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mai Anh Huynh
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David B. Hackney
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ron N. Alkalay
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Rummler M, Ziouti F, Snyder L, Zimmermann EA, Lynch M, Donnelly E, Wagermaier W, Jundt F, Willie BM. Bone mechanical properties were altered in a mouse model of multiple myeloma bone disease. BIOMATERIALS ADVANCES 2025; 166:214047. [PMID: 39303656 DOI: 10.1016/j.bioadv.2024.214047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Multiple myeloma bone disease (MMBD) is characterized by the growth of malignant plasma cells in bone marrow, leading to an imbalance in bone (re)modeling favoring excessive resorption. Loss of bone mass and altered microstructure characterize MMBD in humans and preclinical animal models, although, no study to date has examined bone composition or material properties. We hypothesized that MMBD alters bone composition, mineral crystal properties and mechanical properties in the MOPC315.BM.Luc model after intra-tibial injection of myeloma cells and three weeks of daily in vivo tibial loading. Decreased cortical bone elastic modulus and hardness measured by nanoindentation of tibiae were observed in MM-injected mice compared to PBS-injected mice, whereas cortical bone composition, mineral crystal properties measured by Fourier-transform infrared imaging or small angle X-ray scattering, respectively remained unchanged. However, MM-injected mice had thinner cancellous bone mineral particles compared to PBS-injected mice. Mechanical loading did not lead to altered cortical bone composition, mineral structure, or mechanical properties in the context of MM. Unexpectedly, we observed the intra-tibial injection itself altered the material composition of bone, manifested by increased matrix mineralization and crystal size of the hydroxyapatite crystals in the bone matrix. In conclusion, our data suggest that mechanical stimuli can be used as an adjuvant bone anabolic therapy in patients with MMBD to rebuild bone with unaltered composition and mineral structure to reduce subsequent fracture risk.
Collapse
Affiliation(s)
- Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Fani Ziouti
- Department of Internal Medicine II, Hematology and Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Leah Snyder
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Elizabeth A Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Maureen Lynch
- University of Colorado, Department of Mechanical Engineering, Boulder, CO, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Franziska Jundt
- Department of Internal Medicine II, Hematology and Oncology, University Hospital of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
| |
Collapse
|
3
|
Albano D, Di Luca F, D'Angelo T, Booz C, Midiri F, Gitto S, Fusco S, Serpi F, Messina C, Sconfienza LM. Dual-energy CT in musculoskeletal imaging: technical considerations and clinical applications. LA RADIOLOGIA MEDICA 2024; 129:1038-1047. [PMID: 38743319 PMCID: PMC11252181 DOI: 10.1007/s11547-024-01827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Dual-energy CT stands out as a robust and innovative imaging modality, which has shown impressive advancements and increasing applications in musculoskeletal imaging. It allows to obtain detailed images with novel insights that were once the exclusive prerogative of magnetic resonance imaging. Attenuation data obtained by using different energy spectra enable to provide unique information about tissue characterization in addition to the well-established strengths of CT in the evaluation of bony structures. To understand clearly the potential of this imaging modality, radiologists must be aware of the technical complexity of this imaging tool, the different ways to acquire images and the several algorithms that can be applied in daily clinical practice and for research. Concerning musculoskeletal imaging, dual-energy CT has gained more and more space for evaluating crystal arthropathy, bone marrow edema, and soft tissue structures, including tendons and ligaments. This article aims to analyze and discuss the role of dual-energy CT in musculoskeletal imaging, exploring technical aspects, applications and clinical implications and possible perspectives of this technique.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy.
| | - Filippo Di Luca
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Stefano Fusco
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Serpi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Tolgyesi A, Huang C, Akens M, Kiss A, Hardisty M, Whyne CM. Treatment affects load to failure and microdamage accumulation in healthy and osteolytic rat vertebrae. J Mech Behav Biomed Mater 2024; 151:106382. [PMID: 38211499 DOI: 10.1016/j.jmbbm.2024.106382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Bone turnover and microdamage are impacted by the presence of skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. This exploratory study aimed to establish an initial understanding of microdamage accumulation and load to failure in healthy and osteolytic rat vertebrae following focal and systemic cancer treatment (docetaxel (DTX), stereotactic body radiotherapy (SBRT), or zoledronic acid (ZA)). Osteolytic spine metastases were developed in 6-week-old athymic female rats via intracardiac injection of HeLa human cervical cancer cells (day 0). Additional rats served as healthy controls. Rats were either untreated, received SBRT to the T10-L6 vertebrae on day 14 (15 Gy, two fractions), DTX on day 7 or 14, or ZA on day 7. Rats were euthanized on day 21. Tumor burden was assessed with bioluminescence images acquired on day 14 and 21, histology of the excised T11 and L5 vertebrae, and ex-vivo μCT images of the T13-L4. Microstructural parameters (bone volume/total volume, trabecular number, spacing, thickness, and bone mineral density) were measured from L2 vertebrae. Load to failure was measured with axial compressive loading of the L1-L3 motion segments. Microdamage accumulation was labeled in T13 vertebrae with BaSO4 staining and was visualized with high resolution μCT imaging. Microdamage volume fraction was defined as the ratio of BaSO4 to bone volume. DTX administered on day 7 reduced tumor growth significantly (p < 0.05). Microdamage accumulation was found to be increased by the presence of metastases but was reduced by all treatments with ZA showing the largest improvement in HeLa cell injected rats. Load to failure was decreased in untreated and SBRT HeLa cell injected rats compared to healthy controls (p < 0.01). There was a moderate negative correlation between load to failure and microdamage volume fraction in vertebrae from rats injected with HeLa cells (R = -0.35, p = 0.031). Strong correlations were also found between microstructural parameters and load to failure and microdamage accumulation. Several factors, including the presence of osteolytic lesions and use of cancer therapies, influence microdamage accumulation and load to failure in rat vertebrae. Understanding the impact of these treatments on fracture risk of metastatic vertebrae is important to improve management of patients with spinal metastases.
Collapse
Affiliation(s)
- Allison Tolgyesi
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Institute of Biomedical Engineering, Faculty of Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| | - Christine Huang
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Division of Engineering Science, Faculty of Engineering, University of Toronto, 42 St George Street, Toronto, ON, M5S 2E4, Canada
| | - Margarete Akens
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada; Techna Institute, University Health Network, 190 Elizabeth Street, Toronto, ON, M5G 2C4, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Michael Hardisty
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada
| | - Cari M Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Institute of Biomedical Engineering, Faculty of Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada; Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada
| |
Collapse
|
5
|
Cavazzoni G, Cristofolini L, Dall’Ara E, Palanca M. Bone metastases do not affect the measurement uncertainties of a global digital volume correlation algorithm. Front Bioeng Biotechnol 2023; 11:1152358. [PMID: 37008039 PMCID: PMC10060622 DOI: 10.3389/fbioe.2023.1152358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Measurement uncertainties of Digital Volume Correlation (DVC) are influenced by several factors, like input images quality, correlation algorithm, bone type, etc. However, it is still unknown if highly heterogeneous trabecular microstructures, typical of lytic and blastic metastases, affect the precision of DVC measurements.Methods: Fifteen metastatic and nine healthy vertebral bodies were scanned twice in zero-strain conditions with a micro-computed tomography (isotropic voxel size = 39 μm). The bone microstructural parameters (Bone Volume Fraction, Structure Thickness, Structure Separation, Structure Number) were calculated. Displacements and strains were evaluated through a global DVC approach (BoneDVC). The relationship between the standard deviation of the error (SDER) and the microstructural parameters was investigated in the entire vertebrae. To evaluate to what extent the measurement uncertainty is influenced by the microstructure, similar relationships were assessed within sub-regions of interest.Results: Higher variability in the SDER was found for metastatic vertebrae compared to the healthy ones (range 91-1030 με versus 222–599 με). A weak correlation was found between the SDER and the Structure Separation in metastatic vertebrae and in the sub-regions of interest, highlighting that the heterogenous trabecular microstructure only weakly affects the measurement uncertainties of BoneDVC. No correlation was found for the other microstructural parameters. The spatial distribution of the strain measurement uncertainties seemed to be associated with regions with reduced greyscale gradient variation in the microCT images.Discussion: Measurement uncertainties cannot be taken for granted but need to be assessed in each single application of the DVC to consider the minimum unavoidable measurement uncertainty when interpreting the results.
Collapse
Affiliation(s)
- Giulia Cavazzoni
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Marco Palanca,
| |
Collapse
|
6
|
Verbruggen ASK, McCarthy EC, Dwyer RM, McNamara LM. Temporal and spatial changes in bone mineral content and mechanical properties during breast-cancer bone metastases. Bone Rep 2022; 17:101597. [PMID: 35754558 PMCID: PMC9218171 DOI: 10.1016/j.bonr.2022.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells favour migration and metastasis to bone tissue for 70–80 % of advanced breast cancer patients and it has been proposed that bone tissue provides attractive physical properties that facilitate tumour invasion, resulting in osteolytic and or osteoblastic metastasis. However, it is not yet known how specific bone tissue composition is associated with tumour invasion. In particular, how compositional and nano-mechanical properties of bone tissue evolve during metastasis, and where in the bone they arise, may affect the overall aggressiveness of tumour invasion, but this is not well understood. The objective of this study is to develop an advanced understanding of temporal and spatial changes in nano-mechanical properties and composition of bone tissue during metastasis. Primary mammary tumours were induced by inoculation of immune-competent BALB/c mice with 4T1 breast cancer cells in the mammary fat pad local to the right femur. Microcomputed tomography and nanoindentation were conducted to quantify cortical and trabecular bone matrix mineralisation and nano-mechanical properties. Analysis was performed in proximal and distal femur regions (spatial analysis) of tumour-adjacent (ipsilateral) and contralateral femurs after 3 weeks and 6 weeks of tumour and metastasis development (temporal analysis). By 3 weeks post-inoculation there was no significant difference in bone volume fraction or nano-mechanical properties of bone tissue between the metastatic femora and healthy controls. However, early osteolysis was indicated by trabecular thinning in the distal and proximal trabecular compartment of tumour-bearing femora. Moreover, cortical thickness was significantly increased in the distal region, and the mean mineral density was significantly higher in cortical and trabecular bone tissue in both proximal and distal regions, of ipsilateral (tumour-bearing) femurs compared to healthy controls. By 6 weeks post-inoculation, overt osteolytic lesions were identified in all ipsilateral metastatic femora, but also in two of four contralateral femora of tumour-bearing mice. Bone volume fraction, cortical area, cortical and trabecular thickness were all significantly decreased in metastatic femora (both ipsilateral and contralateral). Trabecular bone tissue stiffness in the proximal femur decreased in the ipsilateral femurs compared to contralateral and control sites. Temporal and spatial analysis of bone nano-mechanical properties and mineralisation during breast cancer invasion reveals changes in bone tissue composition prior to and following overt metastatic osteolysis, local and distant from the primary tumour site. These changes may alter the mechanical environment of both the bone and tumour cells, and thereby play a role in perpetuating the cancer vicious cycle during breast cancer metastasis to bone tissue. Temporal and spatial analyses of bone tissue properties following breast cancer metastasis Trabecular thinning initiated by 3 weeks but overt osteolysis not evident until 6 weeks. Increased bone mineralisation and distal cortical thickness by 3-weeks post-inoculation
Collapse
Affiliation(s)
- Anneke S K Verbruggen
- Mechanobiology and Medical Device Research group (MMDRG), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Elan C McCarthy
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Ireland
| | - Roisin M Dwyer
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research group (MMDRG), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| |
Collapse
|
7
|
Anderson DE, Groff MW, Flood TF, Allaire BT, Davis RB, Stadelmann MA, Zysset PK, Alkalay RN. Evaluation of Load-To-Strength Ratios in Metastatic Vertebrae and Comparison With Age- and Sex-Matched Healthy Individuals. Front Bioeng Biotechnol 2022; 10:866970. [PMID: 35992350 PMCID: PMC9388746 DOI: 10.3389/fbioe.2022.866970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vertebrae containing osteolytic and osteosclerotic bone metastases undergo pathologic vertebral fracture (PVF) when the lesioned vertebrae fail to carry daily loads. We hypothesize that task-specific spinal loading patterns amplify the risk of PVF, with a higher degree of risk in osteolytic than in osteosclerotic vertebrae. To test this hypothesis, we obtained clinical CT images of 11 cadaveric spines with bone metastases, estimated the individual vertebral strength from the CT data, and created spine-specific musculoskeletal models from the CT data. We established a musculoskeletal model for each spine to compute vertebral loading for natural standing, natural standing + weights, forward flexion + weights, and lateral bending + weights and derived the individual vertebral load-to-strength ratio (LSR). For each activity, we compared the metastatic spines' predicted LSRs with the normative LSRs generated from a population-based sample of 250 men and women of comparable ages. Bone metastases classification significantly affected the CT-estimated vertebral strength (Kruskal-Wallis, p < 0.0001). Post-test analysis showed that the estimated vertebral strength of osteosclerotic and mixed metastases vertebrae was significantly higher than that of osteolytic vertebrae (p = 0.0016 and p = 0.0003) or vertebrae without radiographic evidence of bone metastasis (p = 0.0010 and p = 0.0003). Compared with the median (50%) LSRs of the normative dataset, osteolytic vertebrae had higher median (50%) LSRs under natural standing (p = 0.0375), natural standing + weights (p = 0.0118), and lateral bending + weights (p = 0.0111). Surprisingly, vertebrae showing minimal radiographic evidence of bone metastasis presented significantly higher median (50%) LSRs under natural standing (p < 0.0001) and lateral bending + weights (p = 0.0009) than the normative dataset. Osteosclerotic vertebrae had lower median (50%) LSRs under natural standing (p < 0.0001), natural standing + weights (p = 0.0005), forward flexion + weights (p < 0.0001), and lateral bending + weights (p = 0.0002), a trend shared by vertebrae with mixed lesions. This study is the first to apply musculoskeletal modeling to estimate individual vertebral loading in pathologic spines and highlights the role of task-specific loading in augmenting PVF risk associated with specific bone metastatic types. Our finding of high LSRs in vertebrae without radiologically observed bone metastasis highlights that patients with metastatic spine disease could be at an increased risk of vertebral fractures even at levels where lesions have not been identified radiologically.
Collapse
Affiliation(s)
- Dennis E. Anderson
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Michael W. Groff
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Thomas F. Flood
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Brett T. Allaire
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Roger B. Davis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Marc A. Stadelmann
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Philippe K. Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Ron N. Alkalay
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Ghomashchi S, Clement A, Whyne CM, Akens MK. Establishment and Image based evaluation of a New Preclinical Rat Model of Osteoblastic Bone Metastases. Clin Exp Metastasis 2022; 39:833-840. [PMID: 35819644 DOI: 10.1007/s10585-022-10175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Bone remodeling is disrupted in the presence of metastases and can present as osteolytic, osteoblastic or a mixture of the two. Established rat models of osteolytic and mixed metastases have been identified changes in structural and tissue-level properties of bone. The aim of this work was to establish a preclinical rat model of osteoblastic metastases and characterize bone quality changes through image-based evaluation. Female athymic rats (n = 22) were inoculated with human breast cancer cells ZR-75-1 and tumor development tracked over 3-4 months with bioluminescence and in-vivo µCT imaging. Bone tissue-level stereological features were quantified on ex-vivo µCT imaging. Histopathology verified the presence of osteoblastic bone. Bone mineral density distribution was assessed via backscattered electron microscopy. Newly formed osteoblastic bone was associated with reduced mineral content and increased heterogeneity leading to an overall degraded bone quality. Characterizing changes in osteoblastic bone properties is relevant to pre-clinical therapeutic testing and treatment planning.
Collapse
Affiliation(s)
- Soroush Ghomashchi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Allison Clement
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Cari M Whyne
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Surgery, University of Toronto, 101 College Street, Rm 15-311, M5G 1L7, Toronto, ON, Canada
| | - Margarete K Akens
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Surgery, University of Toronto, 101 College Street, Rm 15-311, M5G 1L7, Toronto, ON, Canada. .,Techna Institute, University Health Network, 101 College Street, Rm 15-311, M5G 1L7, Toronto, ON, Canada.
| |
Collapse
|
9
|
Ahmadian H, Mageswaran P, Walter BA, Blakaj DM, Bourekas EC, Mendel E, Marras WS, Soghrati S. Toward an artificial intelligence-assisted framework for reconstructing the digital twin of vertebra and predicting its fracture response. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3601. [PMID: 35403831 PMCID: PMC9285948 DOI: 10.1002/cnm.3601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/13/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
This article presents an effort toward building an artificial intelligence (AI) assisted framework, coined ReconGAN, for creating a realistic digital twin of the human vertebra and predicting the risk of vertebral fracture (VF). ReconGAN consists of a deep convolutional generative adversarial network (DCGAN), image-processing steps, and finite element (FE) based shape optimization to reconstruct the vertebra model. This DCGAN model is trained using a set of quantitative micro-computed tomography (micro-QCT) images of the trabecular bone obtained from cadaveric samples. The quality of synthetic trabecular models generated using DCGAN are verified by comparing a set of its statistical microstructural descriptors with those of the imaging data. The synthesized trabecular microstructure is then infused into the vertebra cortical shell extracted from the patient's diagnostic CT scans using an FE-based shape optimization approach to achieve a smooth transition between trabecular to cortical regions. The final geometrical model of the vertebra is converted into a high-fidelity FE model to simulate the VF response using a continuum damage model under compression and flexion loading conditions. A feasibility study is presented to demonstrate the applicability of digital twins generated using this AI-assisted framework to predict the risk of VF in a cancer patient with spinal metastasis.
Collapse
Affiliation(s)
- Hossein Ahmadian
- Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Prasath Mageswaran
- Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Benjamin A. Walter
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Dukagjin M. Blakaj
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Eric C. Bourekas
- Department of Neurological SurgeryThe Ohio State UniversityColumbusOhioUSA
- Department of RadiologyThe Ohio State UniversityColumbusOhioUSA
- Department of NeurologyThe Ohio State UniversityColumbusOhioUSA
| | - Ehud Mendel
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
- Department of Neurological SurgeryThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopedicsThe Ohio State UniversityColumbusOhioUSA
| | - William S. Marras
- Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Soheil Soghrati
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of Materials Science and EngineeringThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
10
|
Bailey S, Stadelmann MA, Zysset PK, Vashishth D, Alkalay RN. Influence of Metastatic Bone Lesion Type and Tumor Origin on Human Vertebral Bone Architecture, Matrix Quality, and Mechanical Properties. J Bone Miner Res 2022; 37:896-907. [PMID: 35253282 PMCID: PMC9158727 DOI: 10.1002/jbmr.4539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/19/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Metastatic spine disease is incurable, causing increased vertebral fracture risk and severe patient morbidity. Here, we demonstrate that osteolytic, osteosclerotic, and mixed bone metastasis uniquely modify human vertebral bone architecture and quality, affecting vertebral strength and stiffness. Multivariable analysis showed bone metastasis type dominates vertebral strength and stiffness changes, with neither age nor gender having an independent effect. In osteolytic vertebrae, bone architecture rarefaction, lower tissue mineral content and connectivity, and accumulation of advanced glycation end-products (AGEs) affected low vertebral strength and stiffness. In osteosclerotic vertebrae, high trabecular number and thickness but low AGEs, suggesting a high degree of bone remodeling, yielded high vertebral strength. Our study found that bone metastasis from prostate and breast primary cancers differentially impacted the osteosclerotic bone microenvironment, yielding altered bone architecture and accumulation of AGEs. These findings indicate that therapeutic approaches should target the restoration of bone structural integrity. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA
| | - Marc A. Stadelmann
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Philippe K. Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Ron N. Alkalay
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Wang F, Metzner F, Osterhoff G, Schleifenbaum S. Assessment of the efficiency of different chemical treatments and ultrasonic cleaning for defatting of cancellous bone samples. Cell Tissue Bank 2021; 23:499-510. [PMID: 34714441 PMCID: PMC9372121 DOI: 10.1007/s10561-021-09969-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
Our study aimed to asses the defatting efficiency of different methods, which are commonly used and easily available in the laboratory in order to find a method that is effective, convenient, safe, and economical. Cylindrical cancellous bone specimens were obtained from fresh-frozen human cadaver femoral condyles, cut into multiple small specimens (Ø8 × 2 mm), and assigned to two groups that were treated with either chemical solvent soaking (Solvent group) or ultrasonic cleaning (Ultrasound group). Each group was divided into several subgroups based on different treatments. Digital photographs were taken of each specimen. The difference of material density (Δρb), apparent density (Δρapp), and porosity (ΔP) before and after treatment were used as evaluation indicators. For the solvent group, in Δρb, only the combination of 99% ethanol and detergent solution showed a significant difference before and after treatment (P = 0.00). There was no significant difference in ΔP among acetone, the mixture of 99% ethanol and acetone, and the combination of 99% ethanol and detergent solution (P = 0.93). For the ultrasound group, the median of all subgroups in Δρapp and ΔP were all lower than the solvent group. The combination of 99% ethanol and detergent solution (v/v = 1:20), as well as the mixture of 99% ethanol and acetone (v/v = 1:1), seem to be the optimal defatting methods for 2 mm thick cancellous bone slices due to their effectiveness, availability, low-cost and safety. Chemical soaking for 24 h is more effective than ultrasonic cleaning with 99% ethanol or acetone for 20 or 40 min.
Collapse
Affiliation(s)
- Fangxing Wang
- ZESBO - Center for Research on Musculoskeletal Systems, Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany.
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße. 20 Haus 4, 04103, Leipzig, Germany.
| | - Florian Metzner
- ZESBO - Center for Research on Musculoskeletal Systems, Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße. 20 Haus 4, 04103, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO - Center for Research on Musculoskeletal Systems, Department of Orthopaedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany
| |
Collapse
|
12
|
Palanca M, Barbanti-Bròdano G, Marras D, Marciante M, Serra M, Gasbarrini A, Dall'Ara E, Cristofolini L. Type, size, and position of metastatic lesions explain the deformation of the vertebrae under complex loading conditions. Bone 2021; 151:116028. [PMID: 34087385 DOI: 10.1016/j.bone.2021.116028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Bone metastases may lead to spine instability and increase the risk of fracture. Scoring systems are available to assess critical metastases, but they lack specificity, and provide uncertain indications over a wide range, where most cases fall. The aim of this work was to use a novel biomechanical approach to evaluate the effect of lesion type, size, and location on the deformation of the metastatic vertebra. METHOD Vertebrae with metastases were identified from 16 human spines from a donation programme. The size and position of the metastases, and the Spine Instability Neoplastic Score (SINS) were evaluated from clinical Quantitative Computed Tomography images. Thirty-five spine segments consisting of metastatic vertebrae and adjacent healthy controls were biomechanically tested in four different loading conditions. The strain distribution over the entire vertebral bodies was measured with Digital Image Correlation. Correlations between the features of the metastasis (type, size, position and SINS) and the deformation of the metastatic vertebrae were statistically explored. RESULTS The metastatic type (lytic, blastic, mixed) characterizes the vertebral behaviour (Kruskal-Wallis, p = 0.04). In fact, the lytic metastases showed more critical deformation compared to the control vertebrae (average: 2-fold increase, with peaks of 14-fold increase). By contrast, the vertebrae with mixed or blastic metastases did not show a clear trend, with deformations similar or lower than the controls. Once the position of the lytic lesion with respect to the loading direction was taken into account, the size of the lesion was significantly correlated with the perturbation to the strain distribution (r2 = 0.72, p < 0.001). Conversely, the SINS poorly correlated with the mechanical evidence, and only in case of lytic lesions (r2 = 0.25, p < 0.0001). CONCLUSION These results highlight the relevance of the size and location of the lytic lesion, which are marginally considered in the current clinical scoring systems, in driving the spinal biomechanical instability. The strong correlation with the biomechanical evidence indicates that these parameters are representative of the mechanical competence of the vertebra. The improved explanatory power compared to the SINS suggests including them in future guidelines for the clinical practice.
Collapse
Affiliation(s)
- Marco Palanca
- Dept of Oncology and Metabolism, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK; Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | | | - Daniele Marras
- Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Mara Marciante
- Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Michele Serra
- Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Enrico Dall'Ara
- Dept of Oncology and Metabolism, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Luca Cristofolini
- Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Ghomashchi S, Whyne CM, Chinnery T, Habach F, Akens MK. Impact of radiofrequency ablation (RFA) on bone quality in a murine model of bone metastases. PLoS One 2021; 16:e0256076. [PMID: 34495961 PMCID: PMC8425524 DOI: 10.1371/journal.pone.0256076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
Thermal therapies such as radiofrequency ablation (RFA) are gaining widespread clinical adoption in the local treatment of skeletal metastases. RFA has been shown to successfully destroy tumor cells, yet the impact of RFA on the quality of the surrounding bone has not been well characterized. RFA treatment was performed on femora of rats with bone metastases (osteolytic and osteoblastic) and healthy age matched rats. Histopathology, second harmonic generation imaging and backscatter electron imaging were used to characterize changes in the structure, organic and mineral components of the bone after RFA. RFA treatment was shown to be effective in targeting tumor cells and promoting subsequent new bone formation without impacting the surrounding bone negatively. Mineralization profiles of metastatic models were significantly improved post-RFA treatment with respect to mineral content and homogeneity, suggesting a positive impact of RFA treatment on the quality of cancer involved bone. Evaluating the impact of RFA on bone quality is important in directing the growth of this minimally invasive therapeutic approach with respect to fracture risk assessment, patient selection, and multimodal treatment planning.
Collapse
Affiliation(s)
- Soroush Ghomashchi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cari M. Whyne
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tricia Chinnery
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Fayez Habach
- Department of Physics, University of Toronto, Ontario, Canada
| | - Margarete K. Akens
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Alkalay RN, Adamson R, Miropolsky A, Davis RB, Groff ML, Hackney DB. Large Lytic Defects Produce Kinematic Instability and Loss of Compressive Strength in Human Spines: An in Vitro Study. J Bone Joint Surg Am 2021; 103:887-899. [PMID: 33755638 PMCID: PMC9167060 DOI: 10.2106/jbjs.19.00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In patients with spinal metastases, kinematic instability is postulated to be a predictor of pathologic vertebral fractures. However, the relationship between this kinematic instability and the loss of spinal strength remains unknown. METHODS Twenty-four 3-level thoracic and lumbar segments from 8 cadaver spines from female donors aged 47 to 69 years were kinematically assessed in axial compression (180 N) and axial compression with a flexion or extension moment (7.5 Nm). Two patterns of lytic defects were mechanically simulated: (1) a vertebral body defect, corresponding to Taneichi model C (n = 13); and (2) the model-C defect plus destruction of the ipsilateral pedicle and facet joint, corresponding to Taneichi model E (n = 11). The kinematic response was retested, and compression strength was measured. Two-way repeated-measures analysis of variance was used to test the effect of each model on the kinematic response of the segment. Multivariable linear regression was used to test the association between the kinematic parameters and compressive strength of the segment. RESULTS Under a flexion moment, and for both models C and E, the lesioned spines exhibited greater flexion range of motion (ROM) and axial translation than the control spines. Both models C and E caused lower extension ROM and greater axial, sagittal, and transverse translation under an extension moment compared with the control spines. Two-way repeated-measures analysis revealed that model E, compared with model C, caused significantly greater changes in extension and torsional ROM under an extension moment, and greater sagittal translation under a flexion moment. For both models C and E, greater differences in flexion ROM and sagittal translation under a flexion moment, and greater differences in extension ROM and in axial and transverse translation under an extension moment, were associated with lower compressive strength of the lesioned spines. CONCLUSIONS Critical spinal lytic defects result in kinematic abnormalities and lower the compressive strength of the spine. CLINICAL RELEVANCE This experimental study demonstrates that lytic foci degrade the kinematic stability and compressive strength of the spine. Understanding the mechanisms for this degradation will help to guide treatment decisions that address inferred instability and fracture risk in patients with metastatic spinal disease.
Collapse
Affiliation(s)
- Ron N. Alkalay
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery (R.N.A. and R.A.), Division of General Medicine (R.B.D.), and Department of Radiology (D.B.H.), Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts
| | - Robert Adamson
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery (R.N.A. and R.A.), Division of General Medicine (R.B.D.), and Department of Radiology (D.B.H.), Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts
| | | | - Roger B. Davis
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery (R.N.A. and R.A.), Division of General Medicine (R.B.D.), and Department of Radiology (D.B.H.), Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts
| | - Mike L. Groff
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David B. Hackney
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery (R.N.A. and R.A.), Division of General Medicine (R.B.D.), and Department of Radiology (D.B.H.), Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Weiner S, Raguin E, Shahar R. High resolution 3D structures of mineralized tissues in health and disease. Nat Rev Endocrinol 2021; 17:307-316. [PMID: 33758360 DOI: 10.1038/s41574-021-00479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
A thorough knowledge of the structures of healthy mineralized tissues, such as bone or cartilage, is key to understanding the pathological changes occurring during disease. Such knowledge enables the underlying mechanisms that are responsible for pathology to be pinpointed. One high-resolution 3D method in particular - focused ion beam-scanning electron microscopy (FIB-SEM) - has fundamentally changed our understanding of healthy vertebrate mineralized tissues. FIB-SEM can be used to study demineralized matrix, the hydrated components of tissue (including cells) using cryo-fixation and even untreated mineralized tissue. The latter requires minimal sample preparation, making it possible to study enough samples to carry out studies capable of detecting statistically significant differences - a pre-requisite for the study of pathological tissues. Here, we present an imaging and characterization strategy for tissue structures at different length scales, describe new insights obtained on healthy mineralized tissues using FIB-SEM, and suggest future research directions for both healthy and diseased mineralized tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Emeline Raguin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
16
|
Whyne CM, Ferguson D, Clement A, Rangrez M, Hardisty M. Biomechanical Properties of Metastatically Involved Osteolytic Bone. Curr Osteoporos Rep 2020; 18:705-715. [PMID: 33074529 DOI: 10.1007/s11914-020-00633-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Skeletal metastasis involves the uncoupling of physiologic bone remodeling resulting in abnormal bone turnover and radical changes in bony architecture, density, and quality. Bone strength assessment and fracture risk prediction are critical in clinical treatment decision-making. This review focuses on bone tissue and structural mechanisms altered by osteolytic metastasis and the resulting changes to its material and mechanical behavior. RECENT FINDINGS Both organic and mineral phases of bone tissue are altered by osteolytic metastatic disease, with diminished bone quality evident at multiple length-scales. The mechanical performance of bone with osteolytic lesions is influenced by a combination of tissue-level and structural changes. This review considers the effects of osteolytic metastasis on bone biomechanics demonstrating its negative impact at tissue and structural levels. Future studies need to assess the cumulative impact of cancer treatments on metastatically involved bone quality, and its utility in directing multimodal treatment planning.
Collapse
Affiliation(s)
- Cari M Whyne
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.
- Department of Surgery, University of Toronto, Toronto, Canada.
- Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Dallis Ferguson
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Allison Clement
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Mohammedayaz Rangrez
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Michael Hardisty
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Stadelmann MA, Schenk DE, Maquer G, Lenherr C, Buck FM, Bosshardt DD, Hoppe S, Theumann N, Alkalay RN, Zysset PK. Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone's tissue and structure. Bone 2020; 141:115598. [PMID: 32829037 PMCID: PMC9206866 DOI: 10.1016/j.bone.2020.115598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/05/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Pathologic vertebral fractures are a major clinical concern in the management of cancer patients with metastatic spine disease. These fractures are a direct consequence of the effect of bone metastases on the anatomy and structure of the vertebral bone. The goals of this study were twofold. First, we evaluated the effect of lytic, blastic and mixed (both lytic and blastic) metastases on the bone structure, on its material properties, and on the overall vertebral strength. Second, we tested the ability of bone mineral content (BMC) measurements and standard FE methodologies to predict the strength of real metastatic vertebral bodies. METHODS Fifty-seven vertebral bodies from eleven cadaver spines containing lytic, blastic, and mixed metastatic lesions from donors with breast, esophageal, kidney, lung, or prostate cancer were scanned using micro-computed tomography (μCT). Based on radiographic review, twelve vertebrae were selected for nanoindentation testing, while the remaining forty-five vertebrae were used for assessing their compressive strength. The μCT reconstruction was exploited to measure the vertebral BMC and to establish two finite element models. 1) a micro finite element (μFE) model derived at an image resolution of 24.5 μm and 2) homogenized FE (hFE) model derived at a resolution of 0.98 mm. Statistical analyses were conducted to measure the effect of the bone metastases on BV/TV, indentation modulus (Eit), ratio of plastic/total work (WPl/Wtot), and in vitro vertebral strength (Fexp). The predictive value of BMC, μFE stiffness, and hFE strength were evaluated against the in vitro measurements. RESULTS Blastic vertebral bodies exhibit significantly higher BV/TV compared to the mixed (p = 0.0205) and lytic (p = 0.0216) vertebral bodies. No significant differences were found between lytic and mixed vertebrae (p = 0.7584). Blastic bone tissue exhibited a 5.8% lower median Eit (p< 0.001) and a 3.3% lower median Wpl/Wtot (p<0.001) compared to non-involved bone tissue. No significant differences were measured between lytic and non-involved bone tissues. Fexp ranged from 1.9 to 13.8 kN, was strongly associated with hFE strength (R2=0.78, p< 0.001) and moderately associated with BMC (R2=0.66, p< 0.001) and μFE stiffness (R2=0.66, p< 0.001), independently of the lesion type. DISCUSSION Our findings show that tumour-induced osteoblastic metastases lead to slightly, but significantly lower bone tissue properties compared to controls, while osteolytic lesions appear to have a negligible impact. These effects may be attributed to the lower mineralization and woven nature of bone forming in blastic lesions whilst the material properties of bone in osteolytic vertebrae appeared little changed. The moderate association between BMC- and FE-based predictions to fracture strength suggest that vertebral strength is affected by the changes of bone mass induced by the metastatic lesions, rather than altered tissue properties. In a broader context, standard hFE approaches generated from CTs at clinical resolution are robust to the lesion type when predicting vertebral strength. These findings open the door for the development of FE-based prediction tools that overcomes the limitations of BMC in accounting for shape and size of the metastatic lesions. Such tools may help clinicians to decide whether a patient needs the prophylactic fixation of an impending fracture.
Collapse
Affiliation(s)
- Marc A Stadelmann
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Denis E Schenk
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Ghislain Maquer
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Christopher Lenherr
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Florian M Buck
- University of Zurich & MRI Schulthess Clinic, Zurich, Switzerland
| | - Dieter D Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Switzerland
| | - Sven Hoppe
- Department of Orthopedic Surgery, Inselspital, Bern University Hospital, Switzerland
| | | | - Ron N Alkalay
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Philippe K Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland.
| |
Collapse
|
18
|
CT based quantitative measures of the stability of fractured metastatically involved vertebrae treated with spine stereotactic body radiotherapy. Clin Exp Metastasis 2020; 37:575-584. [PMID: 32643007 DOI: 10.1007/s10585-020-10049-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022]
Abstract
Mechanical instability secondary to vertebral metastases can lead to pathologic vertebral compression fracture (VCF) mechanical pain, neurological compromise, and the need for surgical stabilization. Stereotactic body radiation therapy (SBRT) as a treatment for spinal metastases is effective for pain and local tumor control, it has been associated with an increased risk of VCF. This study quantified computed tomography (CT) based stability measures in metastatic vertebrae with VCF treated with spine SBRT. It was hypothesized that semi-automated quantification of VCF based on CT metrics would be related to clinical outcomes. 128 SBRT treated spinal metastases patients were identified from a prospective database. Of these, 18 vertebral segments were identified with a VCF post-SBRT. A semi-automated system for quantifying VCF was developed based on CT imaging before and after SBRT. The system identified and segmented SBRT treated vertebral bodies, calculated stability metrics at single time points and changes over time. In the vertebrae that developed a new (n = 7) or progressive (n = 11) VCF following SBRT, the median time to VCF/VCF progression was 1.74 months (range 0.53-7.79 months). Fractured thoracolumbar vertebrae that went on to be stabilized (cemented and/or instrumented), had greater fractured vertebral body volume progression over time (12%) compared to those not stabilized (0.4%, p < 0.05). Neither the spinal instability neoplastic score (SINS) or any single timepoint stability metrics in post-hoc analyses correlated with future stabilization. This pilot study presents a quantitative semi-automated method assessing fractured thoracolumbar vertebrae based on CT. Increased fractured vertebral body volume progression post-SBRT was shown to predict those patients who were subsequently stabilized, motivating study of methods that assess temporal radiological changes toward augmenting existing clinical management in the metastatic spine.
Collapse
|
19
|
Bailey S, Hackney D, Vashishth D, Alkalay RN. The effects of metastatic lesion on the structural determinants of bone: Current clinical and experimental approaches. Bone 2020; 138:115159. [PMID: 31759204 PMCID: PMC7531290 DOI: 10.1016/j.bone.2019.115159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023]
Abstract
Metastatic bone disease is incurable with an associated increase in skeletal-related events, particularly a 17-50% risk of pathologic fractures. Current surgical and oncological treatments are palliative, do not reduce overall mortality, and therefore optimal management of adults at risk of pathologic fractures presents an unmet medical need. Plain radiography lacks specificity and may result in unnecessary prophylactic fixation. Radionuclide imaging techniques primarily supply information on the metabolic activity of the tumor or the bone itself. Magnetic resonance imaging and computed tomography provide excellent anatomical and structural information but do not quantitatively assess bone matrix. Research has now shifted to developing unbiased data-driven tools that can predict risk of impending fractures and guide individualized treatment decisions. This review discusses the state-of-the-art in clinical and experimental approaches for prediction of pathologic fractures with bone metastases. Alterations in bone matrix quality are associated with an age-related increase in skeletal fragility but the impact of metastases on the intrinsic material properties of bone is unclear. Engineering-based analyses are non-invasive with the capability to evaluate oncological treatments and predict failure due to the progression of metastasis. The combination of these approaches may improve our understanding of the underlying deterioration in mechanical performance.
Collapse
Affiliation(s)
- Stacyann Bailey
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - David Hackney
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Ron N Alkalay
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
20
|
Marazzi F, Orlandi A, Manfrida S, Masiello V, Di Leone A, Massaccesi M, Moschella F, Franceschini G, Bria E, Gambacorta MA, Masetti R, Tortora G, Valentini V. Diagnosis and Treatment of Bone Metastases in Breast Cancer: Radiotherapy, Local Approach and Systemic Therapy in a Guide for Clinicians. Cancers (Basel) 2020; 12:cancers12092390. [PMID: 32846945 PMCID: PMC7563945 DOI: 10.3390/cancers12092390] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The standard care for metastatic breast cancer (MBC) is systemic therapies with imbrication of focal treatment for symptoms. Recently, thanks to implementation of radiological and metabolic exams and development of new target therapies, oligometastatic and oligoprogressive settings are even more common-paving the way to a paradigm change of focal treatments role. In fact, according to immunophenotype, radiotherapy can be considered with radical intent in these settings of patients. The aim of this literature review is to analyze available clinical data on prognosis of bone metastases from breast cancer and benefits of available treatments for developing a practical guide for clinicians.
Collapse
Affiliation(s)
- Fabio Marazzi
- “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario, 00168 Roma, Italy; (F.M.); (S.M.); (M.M.); (M.A.G.); (V.V.)
| | - Armando Orlandi
- “A. Gemelli” IRCCS, UOC di Oncologia Medica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario, 00168 Roma, Italy; (A.O.); (E.B.); (G.T.)
| | - Stefania Manfrida
- “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario, 00168 Roma, Italy; (F.M.); (S.M.); (M.M.); (M.A.G.); (V.V.)
| | - Valeria Masiello
- “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario, 00168 Roma, Italy; (F.M.); (S.M.); (M.M.); (M.A.G.); (V.V.)
- Correspondence:
| | - Alba Di Leone
- “A. Gemelli” IRCCS, UOC di Chirurgia Senologica, Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario, 00168 Roma, Italy; (A.D.L.); (F.M.); (G.F.); (R.M.)
| | - Mariangela Massaccesi
- “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario, 00168 Roma, Italy; (F.M.); (S.M.); (M.M.); (M.A.G.); (V.V.)
| | - Francesca Moschella
- “A. Gemelli” IRCCS, UOC di Chirurgia Senologica, Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario, 00168 Roma, Italy; (A.D.L.); (F.M.); (G.F.); (R.M.)
| | - Gianluca Franceschini
- “A. Gemelli” IRCCS, UOC di Chirurgia Senologica, Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario, 00168 Roma, Italy; (A.D.L.); (F.M.); (G.F.); (R.M.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Emilio Bria
- “A. Gemelli” IRCCS, UOC di Oncologia Medica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario, 00168 Roma, Italy; (A.O.); (E.B.); (G.T.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Maria Antonietta Gambacorta
- “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario, 00168 Roma, Italy; (F.M.); (S.M.); (M.M.); (M.A.G.); (V.V.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Riccardo Masetti
- “A. Gemelli” IRCCS, UOC di Chirurgia Senologica, Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario, 00168 Roma, Italy; (A.D.L.); (F.M.); (G.F.); (R.M.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giampaolo Tortora
- “A. Gemelli” IRCCS, UOC di Oncologia Medica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario, 00168 Roma, Italy; (A.O.); (E.B.); (G.T.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Vincenzo Valentini
- “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario, 00168 Roma, Italy; (F.M.); (S.M.); (M.M.); (M.A.G.); (V.V.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
21
|
Falcinelli C, Di Martino A, Gizzi A, Vairo G, Denaro V. Mechanical behavior of metastatic femurs through patient-specific computational models accounting for bone-metastasis interaction. J Mech Behav Biomed Mater 2019; 93:9-22. [PMID: 30738327 DOI: 10.1016/j.jmbbm.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/21/2022]
Abstract
This paper proposes a computational model based on a finite-element formulation for describing the mechanical behavior of femurs affected by metastatic lesions. A novel geometric/constitutive description is introduced by modelling healthy bone and metastases via a linearly poroelastic constitutive approach. A Gaussian-shaped graded transition of material properties between healthy and metastatic tissues is prescribed, in order to account for the bone-metastasis interaction. Loading-induced failure processes are simulated by implementing a progressive damage procedure, formulated via a quasi-static displacement-driven incremental approach, and considering both a stress- and a strain-based failure criterion. By addressing a real clinical case, left and right patient-specific femur models are geometrically reconstructed via an ad-hoc imaging procedure and embedding multiple distributions of metastatic lesions along femurs. Significant differences in fracture loads, fracture mechanisms, and damage patterns, are highlighted by comparing the proposed constitutive description with a purely elastic formulation, where the metastasis is treated as a pseudo-healthy tissue or as a void region. Proposed constitutive description allows to capture stress/strain localization mechanisms within the metastatic tissue, revealing the model capability in describing possible strain-induced mechano-biological stimuli driving onset and evolution of the lesion. The proposed approach opens towards the definition of effective computational strategies for supporting clinical decision and treatments regarding metastatic femurs, contributing also to overcome some limitations of actual standards and procedures.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Department of Engineering, Campus Bio-Medico University of Rome, Italy; Department of Civil Engineering & Computer Science, University of Rome "Tor Vergata", Italy
| | - Alberto Di Martino
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy; Sideny Kimmel Medical College, Thomas Jefferson University (SKMC), Philadelphia, USA
| | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, Italy
| | - Giuseppe Vairo
- Department of Civil Engineering & Computer Science, University of Rome "Tor Vergata", Italy.
| | - Vincenzo Denaro
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| |
Collapse
|
22
|
Elevated Microdamage Spatially Correlates with Stress in Metastatic Vertebrae. Ann Biomed Eng 2019; 47:980-989. [PMID: 30673956 DOI: 10.1007/s10439-018-02188-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Metastasis of cancer to the spine impacts bone quality. This study aims to characterize vertebral microdamage secondary to metastatic disease considering the pattern of damage and its relationship to stress and strain under load. Osteolytic and mixed osteolytic/osteoblastic vertebral metastases were produced in athymic rats via HeLa cervical or canine Ace-1 prostate cancer cell inoculation, respectively. After 21 days, excised motion segments (T12-L2) were µCT scanned, stained with BaSO4 and re-imaged. T13-L2 motion segments were loaded in axial compression to induce microdamage, re-stained and re-imaged. L1 (loaded) and T12 (unloaded) vertebrae were fixed, sample blocks cut, polished and BSE imaged. µFE models were generated of all L1 vertebrae with displacement boundary conditions applied based on the loaded µCT images. µCT stereological analysis, BSE analysis and µFE derived von Mises stress and principal strains were quantitatively compared (ANOVA), spatial correlations determined and patterns of microdamage assessed qualitatively. BaSO4 identified microdamage was found to be spatially correlated with regions of high stress in µFEA. Load-induced microdamage was shown to be elevated in the presence of osteolytic and mixed metastatic disease, with diffuse, crossed hatched areas of microdamage present in addition to linear microdamage and microfractures in metastatic tissue, suggesting diminished bone quality.
Collapse
|
23
|
Burke M, Akens M, Kiss A, Willett T, Whyne C. Mechanical behavior of metastatic vertebrae are influenced by tissue architecture, mineral content, and organic feature alterations. J Orthop Res 2018; 36:3013-3022. [PMID: 29978906 DOI: 10.1002/jor.24105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/01/2018] [Indexed: 02/04/2023]
Abstract
Diminished vertebral mechanical behavior with metastatic involvement is typically attributed to modified architecture and trabecular bone content. Previous work has identified organic and mineral phase bone quality changes in the presence of metastases, yet limited work exists on the potential influence of such tissue level modifications on vertebral mechanical characteristics. This work seeks to determine correlations between features of bone (structural and tissue level) and mechanical behavior in metastatically involved vertebral bone. It is hypothesized that tissue level properties (mineral and organic) will improve these correlations beyond architectural properties and BMD alone. Twenty-four female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic (N = 8) or mixed (osteolytic/osteoblastic, N = 7) metastases, respectively. Twenty-one days post-inoculation L1-L3 pathologic vertebral motion segments were excised and μCT imaged. 3D morphometric parameters and axial rigidity of the L2 vertebrae were quantified. Sequential loading and μCT imaging measured progression of failure, stiffness and peak force. Relationships between mechanical testing (whole bone and tissue-level) and tissue-level material property modifications with metastatic involvement were evaluated utilizing linear regression models. Osteolytic involvement reduced vertebral trabecular bone volume, structure, CT-derived axial rigidity, stiffness and failure force compared to healthy controls (N = 9). Mixed metastases demonstrated similar trends. Previously assessed collagen cross-linking and proline-based residues were correlated to mechanical behavior and improved the predictive ability of the regression models. Similarly, collagen organization improved predictive regression models for metastatic bone hardness. This work highlights the importance of both bone content/architecture and organic tissue-level features in characterizing metastatic vertebral mechanics. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3013-3022, 2018.
Collapse
Affiliation(s)
- Mikhail Burke
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, Ontario.,Techna, University Health Network, Toronto, Ontario
| | - Alex Kiss
- Evaluative Clinical Sciences, Hurvitz Brain Science Program, Sunnybrook Research Institute, Toronto, Ontario
| | - Thomas Willett
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario
| | - Cari Whyne
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario.,Department of Surgery, University of Toronto, Toronto, Ontario
| |
Collapse
|
24
|
Palanca M, Barbanti-Bròdano G, Cristofolini L. The Size of Simulated Lytic Metastases Affects the Strain Distribution on the Anterior Surface of the Vertebra. J Biomech Eng 2018; 140:2686534. [DOI: 10.1115/1.4040587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/25/2022]
Abstract
Metastatic lesions of the vertebra are associated with risk of fracture, which can be disabling and life-threatening. In the literature, attempts are found to identify the parameters that reduce the strength of a metastatic vertebra leading to spine instability. However, a number of controversial issues remain. Our aim was to quantify how the strain distribution in the vertebral body is affected by the presence and by the size of a simulated metastatic defect. Five cadaveric thoracic spine segments were subjected to non-destructive presso-flexion while intact, and after simulation of metastases of increasing size. For the largest defect, the specimens were eventually tested to failure. The full-field strain distribution in the elastic range was measured with digital image correlation (DIC) on the anterior surface of the vertebral body. The mean strain in the vertebra remained similar to the intact when the defects were smaller than 30% of the vertebral volume. The mean strains became significantly larger than in the intact for larger defects. The map of strain and its statistical distribution indicated a rather uniform condition in the intact vertebra and with defects smaller than 30%. Conversely, the strain distribution became significantly different from the intact for defects larger than 30%. A strain peak appeared in the region of the simulated metastasis, where fracture initiated during the final destructive test. This is a first step in understanding how the features of metastasis influence the vertebral strain and for the construction of a mechanistic model to predicted fracture.
Collapse
Affiliation(s)
- Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum—Università di Bologna, Via Terracini 24-28, Bologna 40131, Italy e-mail:
| | - Giovanni Barbanti-Bròdano
- Department of Oncologic and Degenerative Spine Surgery, Rizzoli Orthopaedic Institute, Via G.C. Pupilli 1, Bologna 40136, Italy e-mail:
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum—Università di Bologna, Via Terracini 24-28, Bologna 40131, Italy e-mail:
| |
Collapse
|
25
|
Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis. Proc Natl Acad Sci U S A 2017; 114:10542-10547. [PMID: 28923958 DOI: 10.1073/pnas.1708161114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.
Collapse
|
26
|
Burke M, Golaraei A, Atkins A, Akens M, Barzda V, Whyne C. Collagen fibril organization within rat vertebral bone modified with metastatic involvement. J Struct Biol 2017; 199:153-164. [PMID: 28655593 DOI: 10.1016/j.jsb.2017.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour.
Collapse
Affiliation(s)
- Mikhail Burke
- Institution of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ahmad Golaraei
- Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, ON, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ayelet Atkins
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, ON, Canada; Techna, University Health Network, Toronto, ON, Canada
| | - Virginijus Barzda
- Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, ON, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Cari Whyne
- Institution of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|