1
|
Finan JD, Vogt TE, Samei Y. Cavitation in blunt impact traumatic brain injury. EXPERIMENTS IN FLUIDS 2024; 65:114. [PMID: 39036013 PMCID: PMC11255084 DOI: 10.1007/s00348-024-03853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Traumatic brain injury (TBI) poses a major public health challenge. No proven therapies for the condition exist so protective equipment that prevents or mitigates these injuries plays a critical role in minimizing the societal burden of this condition. Our ability to optimize protective equipment depends on our capacity to relate the mechanics of head impact events to morbidity and mortality. This capacity, in turn, depends on correctly identifying the mechanisms of injury. For several decades, a controversial theory of TBI biomechanics has attributed important classes of injury to cavitation inside the cranial vault during blunt impact. This theory explains counter-intuitive clinical observations, including the coup-contre-coup pattern of injury. However, it is also difficult to validate experimentally in living subjects. Also, blunt impact TBI is a broad term that covers a range of different head impact events, some of which may be better described by cavitation theory than others. This review surveys what has been learned about cavitation through mathematical modeling, physical modeling, and experimentation with living tissues and places it in context with competing theories of blunt injury biomechanics and recent research activity in the field in an attempt to understand what the theory has to offer the next generation of innovators in TBI biomechanics.
Collapse
Affiliation(s)
- John D. Finan
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Thea E. Vogt
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Yasaman Samei
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| |
Collapse
|
2
|
Ueno Y, Kariya S, Ono Y, Maruyama T, Nakatani M, Komemushi A, Tanigawa N. In Vivo Sonoporation Effect Under the Presence of a Large Amount of Micro-Nano Bubbles in Swine Liver. Ultrasound Q 2024; 40:144-148. [PMID: 37918108 DOI: 10.1097/ruq.0000000000000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Sonoporation as a method of intracellular drug and gene delivery has not yet progressed to being used in vivo. The aim of this study was to prove the feasibility of sonoporation at a level practical for use in vivo by using a large amount of carbon dioxide micro-nano bubbles. METHODS The carbon dioxide micro-nano bubbles and 100 mg of cisplatin were intra-arterially injected to the swine livers, and ultrasound irradiation was performed from the surface of the liver under laparotomy during the intra-arterial injection. After the intra-arterial injection, ultrasound-irradiated and nonirradiated liver tissues were immediately excised. Tissue platinum concentration was measured using inductively coupled plasma mass spectrometry. Liver tissue platinum concentrations were compared between the irradiated tissue and nonirradiated tissue using the Wilcoxon signed rank test. RESULTS The mean (SD) liver tissue platinum concentration was 6.260*103 (2.070) ng/g in the irradiated liver tissue and 3.280*103 (0.430) ng/g in the nonirradiated liver tissue, showing significantly higher concentrations in the irradiated tissue ( P = 0.004). CONCLUSIONS In conclusion, increasing the tissue concentration of administered cisplatin in the livers of living swine through the effect of sonoporation was possible in the presence of a large amount of micro-nano bubbles.
Collapse
Affiliation(s)
- Yutaka Ueno
- Department of Radiology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Mohammadigoushki H, Shoele K. Cavitation Rheology of Model Yield Stress Fluids Based on Carbopol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37220652 DOI: 10.1021/acs.langmuir.3c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Measuring the surface tension of yield stress fluids has remained a critical challenge due to limitations of the traditional tensiometry techniques. Here, we overcome those limits and successfully measure the surface tension and mechanical properties of a model yield stress fluid based on Carbopol gels via a needle-induced cavitation (NIC) technique. Our results indicate that the surface tension is approximately 70 ± 3 mN/m, and is independent of the rheology of yield stress fluid over a wide range of yield stress values σy = 0.5-120 Pa. In addition, we demonstrate that a Young modulus smaller than E < 1 kPa can be successfully measured for Carbopol gels with NIC method. Finally, we present a time-resolved flow structure around the cavity in a host of yield stress fluids, and assess the impact of fluid rheology on the detailed form of flow around the cavity. Interestingly, prior to the critical point associated with cavitation, the yield stress fluid is weakly deformed suggesting that the measured surface tension data reflect the near equilibrium values. Beyond the critical point, the yield stress fluid experiences a strong flow that is controlled by both the critical pressure and the non-Newtonian rheology of the yield stress fluid.
Collapse
Affiliation(s)
- Hadi Mohammadigoushki
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Kourosh Shoele
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
4
|
Dougan CE, Song Z, Fu H, Crosby AJ, Cai S, Peyton SR. Cavitation induced fracture of intact brain tissue. Biophys J 2022; 121:2721-2729. [PMID: 35711142 PMCID: PMC9382329 DOI: 10.1016/j.bpj.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022] Open
Abstract
Nonpenetrating traumatic brain injuries (TBIs) are linked to cavitation. The structural organization of the brain makes it particularly susceptible to tears and fractures from these cavitation events, but limitations in existing characterization methods make it difficult to understand the relationship between fracture and cavitation in this tissue. More broadly, fracture energy is an important, yet often overlooked, mechanical property of all soft tissues. We combined needle-induced cavitation with hydraulic fracture models to induce and quantify fracture in intact brains at precise locations. We report here the first measurements of the fracture energy of intact brain tissue that range from 1.5 to 8.9 J/m2, depending on the location in the brain and the model applied. We observed that fracture consistently occurs along interfaces between regions of brain tissue. These fractures along interfaces allow cavitation-related damage to propagate several millimeters away from the initial injury site. Quantifying the forces necessary to fracture brain and other soft tissues is critical for understanding how impact and blast waves damage tissue in vivo and has implications for the design of protective gear and tissue engineering.
Collapse
Affiliation(s)
- Carey E Dougan
- Chemical Engineering Department, University of Massachusetts, Amherst, Massachusetts
| | - Zhaoqiang Song
- Mechanical and Aerospace Engineering Department, University of California, San Diego, California
| | - Hongbo Fu
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts
| | - Shengqiang Cai
- Mechanical and Aerospace Engineering Department, University of California, San Diego, California
| | - Shelly R Peyton
- Chemical Engineering Department, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
5
|
Yu X, Nguyen TT, Wu T, Ghajari M. Non-Lethal Blasts can Generate Cavitation in Cerebrospinal Fluid While Severe Helmeted Impacts Cannot: A Novel Mechanism for Blast Brain Injury. Front Bioeng Biotechnol 2022; 10:808113. [PMID: 35875481 PMCID: PMC9302597 DOI: 10.3389/fbioe.2022.808113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebrospinal fluid (CSF) cavitation is a likely physical mechanism for producing traumatic brain injury (TBI) under mechanical loading. In this study, we investigated CSF cavitation under blasts and helmeted impacts which represented loadings in battlefield and road traffic/sports collisions. We first predicted the human head response under the blasts and impacts using computational modelling and found that the blasts can produce much lower negative pressure at the contrecoup CSF region than the impacts. Further analysis showed that the pressure waves transmitting through the skull and soft tissue are responsible for producing the negative pressure at the contrecoup region. Based on this mechanism, we hypothesised that blast, and not impact, can produce CSF cavitation. To test this hypothesis, we developed a one-dimensional simplified surrogate model of the head and exposed it to both blasts and impacts. The test results confirmed the hypothesis and computational modelling of the tests validated the proposed mechanism. These findings have important implications for prevention and diagnosis of blast TBI.
Collapse
Affiliation(s)
- Xiancheng Yu
- HEAD lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
- *Correspondence: Xiancheng Yu,
| | - Thuy-Tien Nguyen
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Tianchi Wu
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mazdak Ghajari
- HEAD lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Kim C, Choi WJ, Kang W. Cavitation nucleation and its ductile-to-brittle shape transition in soft gels under translational mechanical impact. Acta Biomater 2022; 142:160-173. [PMID: 35189381 DOI: 10.1016/j.actbio.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
Cavitation bubbles in the human body, when subjected to impact, are being increasingly considered as a possible brain injury mechanism. However, the onset of cavitation and its complex dynamics in biological materials remain unclear. Our experimental results using soft gels as a tissue simulant show that the critical acceleration (acr) at cavitation nucleation monotonically increases with increasing stiffness of gelatin A/B, while acr for agarose and agar initially increases but is followed by a plateau or even decrease after stiffness reach to ∼100 kPa. Our image analyses of cavitation bubbles and theoretical work reveal that the observed trends in acr are directly linked to how bubbles grow in each gel. Gelatin A/B, regardless of their stiffness, form a localized damaged zone (tens of nanometers) at the gel-bubble interface during bubble growth. In contrary, the damaged zone in agar/agarose becomes significantly larger (> 100 times) with increasing shear modulus, which triggers the transition from formation of a small, damaged zone to activation of crack propagation. STATEMENT OF SIGNIFICANCE: We have studied cavitation nucleation and bubble growth in four different types of soft gels (i.e., tissue simulants) under translational impact. The critical linear acceleration for cavitation nucleation has been measured in the simulants by utilizing a recently developed method that mimics acceleration profiles of typical head blunt events. Each gel type exhibits significantly different trends in the critical acceleration and bubble shape (e.g., A gel-specific sphere-to-saucer transition) with increasing gel stiffness. Our theoretical framework, based on the concepts of a damaged zone and crack propagation in each gel, explains underlying mechanisms of the experimental observations. Our in-depth studies shed light on potential links between traumatic brain injuries and cavitation bubbles induced by translational acceleration, the overlooked mechanism in the literature.
Collapse
Affiliation(s)
- Chunghwan Kim
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States
| | - Won June Choi
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States
| | - Wonmo Kang
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States.
| |
Collapse
|
7
|
Egan GC, Lau EY, Schwegler E. Multiframe Imaging of Micron and Nanoscale Bubble Dynamics. NANO LETTERS 2022; 22:1053-1058. [PMID: 35044188 DOI: 10.1021/acs.nanolett.1c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we report on the direct sequential imaging of laser-induced cavitation of micron and nanoscale bubbles using Movie-Mode Dynamic Transmission Electron Microscopy (MM-DTEM). A 532 nm laser pulse (∼12 ns) was used to excite gold nanoparticles inside a ∼1.2 μm layer of water, and the resulting bubbles were observed with a series of nine electron pulses (∼10 ns) separated by as little as 40 ns peak to peak. Isolated nanobubbles were observed to collapse in less than 50 ns, while larger (∼2-3 μm) bubbles were observed to grow and collapse in less than 200 ns. Temporal profiles were generally asymmetric, possibly indicating faster growth than collapse dynamics, and the collapse time scale was found to be consistent with modeling and literature data from other techniques. More complex behavior was also observed for bubbles within proximity to each other, with interaction leading to longer lifetimes and more likely rebounding after collapse.
Collapse
Affiliation(s)
- Garth C Egan
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Edmond Y Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Eric Schwegler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
8
|
Dagro AM, Wilkerson JW, Thomas TP, Kalinosky BT, Payne JA. Computational modeling investigation of pulsed high peak power microwaves and the potential for traumatic brain injury. SCIENCE ADVANCES 2021; 7:eabd8405. [PMID: 34714682 PMCID: PMC8555891 DOI: 10.1126/sciadv.abd8405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
When considering safety standards for human exposure to radiofrequency (RF) and microwave energy, the dominant concerns pertain to a thermal effect. However, in the case of high-power pulsed RF/microwave energy, a rapid thermal expansion can lead to stress waves within the body. In this study, a computational model is used to estimate the temperature profile in the human brain resulting from exposure to various RF/microwave incident field parameters. The temperatures are subsequently used to simulate the resulting mechanical response of the brain. Our simulations show that, for certain extremely high-power microwave exposures (permissible by current safety standards), very high stresses may occur within the brain that may have implications for neuropathological effects. Although the required power densities are orders of magnitude larger than most real-world exposure conditions, they can be achieved with devices meant to emit high-power electromagnetic pulses in military and research applications.
Collapse
Affiliation(s)
- Amy M. Dagro
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Justin W. Wilkerson
- J. Mike ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | - Benjamin T. Kalinosky
- General Dynamics Information Technology, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | - Jason A. Payne
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| |
Collapse
|
9
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Marsh JL, Bentil SA. Cerebrospinal Fluid Cavitation as a Mechanism of Blast-Induced Traumatic Brain Injury: A Review of Current Debates, Methods, and Findings. Front Neurol 2021; 12:626393. [PMID: 33776887 PMCID: PMC7994250 DOI: 10.3389/fneur.2021.626393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Cavitation has gained popularity in recent years as a potential mechanism of blast-induced traumatic brain injury (bTBI). This review presents the most prominent debates on cavitation; how bubbles can form or exist within the cerebrospinal fluid (CSF) and brain vasculature, potential mechanisms of cellular, and tissue level damage following the collapse of bubbles in response to local pressure fluctuations, and a survey of experimental and computational models used to address cavitation research questions. Due to the broad and varied nature of cavitation research, this review attempts to provide a necessary synthesis of cavitation findings relevant to bTBI, and identifies key areas where additional work is required. Fundamental questions about the viability and likelihood of CSF cavitation during blast remain, despite a variety of research regarding potential injury pathways. Much of the existing literature on bTBI evaluates cavitation based off its prima facie plausibility, while more rigorous evaluation of its likelihood becomes increasingly necessary. This review assesses the validity of some of the common assumptions in cavitation research, as well as highlighting outstanding questions that are essential in future work.
Collapse
Affiliation(s)
- Jenny L Marsh
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| | - Sarah A Bentil
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Mechanisms of cell damage due to mechanical impact: an in vitro investigation. Sci Rep 2020; 10:12009. [PMID: 32686715 PMCID: PMC7371734 DOI: 10.1038/s41598-020-68655-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
The dynamic response of cells when subjected to mechanical impact has become increasingly relevant for accurate assessment of potential blunt injuries and elucidating underlying injury mechanisms. When exposed to mechanical impact, a biological system such as the human skin, brain, or liver is rapidly accelerated, which could result in blunt injuries. For this reason, an acceleration of greater than > 150 g is the most commonly used criteria for head injury. To understand the main mechanism(s) of blunt injury under such extreme dynamic threats, we have developed an innovative experimental method that applies a well-characterized and -controlled mechanical impact to live cells cultured in a custom-built in vitro setup compatible with live cell microscopy. Our studies using fibroblast cells as a model indicate that input acceleration (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${a}_{in}$$\end{document}ain) alone, even when it is much greater than the typical injury criteria, e.g., \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${a}_{in}>1{,}000$$\end{document}ain>1,000 g, does not result in cell damage. On the contrary, we have observed a material-dependent critical pressure value above which a sudden decrease in cell population and cell membrane damage have been observed. We have unambiguously shown that (1) this critical pressure is associated with the onset of cavitation bubbles in a cell culture chamber and (2) the dynamics of cavitation bubbles in the chamber induces localized compressive/tensile pressure cycles, with an amplitude that is considerably greater than the acceleration-induced pressure, to cells. More importantly, the rate of pressure change with time for cavitation-induced pressure is significantly faster (more than ten times) than acceleration-induced pressure. Our in vitro study on the dynamic response of biological systems due to mechanical impact is a crucial step towards understanding potential mechanism(s) of blunt injury and implementing novel therapeutic strategies post-trauma.
Collapse
|
12
|
Wrede AH, McNamara MC, Baldwin R, Luo J, Montazami R, Kanthasamy A, Hashemi NN. Characterization of Astrocytic Response after Experiencing Cavitation In Vitro. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:1900014. [PMID: 32642072 PMCID: PMC7330500 DOI: 10.1002/gch2.201900014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2020] [Indexed: 06/11/2023]
Abstract
When a traumatic brain injury (TBI) occurs, low-pressure regions inside the skull can cause vapor contents in the cerebral spinal fluid (CSF) to expand and collapse, a phenomenon known as cavitation. When these microbubbles (MBs) collapse, shock waves are radiated outward and are known to damage surrounding materials in other applications, like the steel foundation of boat propellers, so it is alarming to realize the damage that cavitation inflicts on vulnerable brain tissue. Using cell-laden microfibers, the longitudinal morphological response that mouse astrocytes have to surrounding cavitation in vitro is visually analyzed. Astrocytic damage is evident immediately after cavitation when compared to a control sample, as their processes retract. Forty-eight hours later, the astrocytes appeared to spread across the fibers, as normal. This study also analyzes the gene expression changes that occur post-cavitation via quantitative polymerase chain reaction (qPCR) methods. After cavitation a number of pro-inflammatory genes are upregulated, including TNFα, IL-1β, C1q, Serping1, NOS1, IL-6, and JMJD3. Taken together, these results confirm that surrounding cavitation is detrimental to astrocytic function, and yield opportunities to further the understanding of how protective headgear can minimize or eliminate the occurrence of cavitation.
Collapse
Affiliation(s)
- Alex H. Wrede
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | | - Rodger Baldwin
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Jie Luo
- Department of Biomedical SciencesIowa State UniversityAmesIA50011USA
| | - Reza Montazami
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | | - Nicole N. Hashemi
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
- Department of Biomedical SciencesIowa State UniversityAmesIA50011USA
| |
Collapse
|
13
|
Barney CW, Dougan CE, McLeod KR, Kazemi-Moridani A, Zheng Y, Ye Z, Tiwari S, Sacligil I, Riggleman RA, Cai S, Lee JH, Peyton SR, Tew GN, Crosby AJ. Cavitation in soft matter. Proc Natl Acad Sci U S A 2020; 117:9157-9165. [PMID: 32291337 PMCID: PMC7196784 DOI: 10.1073/pnas.1920168117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cavitation is the sudden, unstable expansion of a void or bubble within a liquid or solid subjected to a negative hydrostatic stress. Cavitation rheology is a field emerging from the development of a suite of materials characterization, damage quantification, and therapeutic techniques that exploit the physical principles of cavitation. Cavitation rheology is inherently complex and broad in scope with wide-ranging applications in the biology, chemistry, materials, and mechanics communities. This perspective aims to drive collaboration among these communities and guide discussion by defining a common core of high-priority goals while highlighting emerging opportunities in the field of cavitation rheology. A brief overview of the mechanics and dynamics of cavitation in soft matter is presented. This overview is followed by a discussion of the overarching goals of cavitation rheology and an overview of common experimental techniques. The larger unmet needs and challenges of cavitation in soft matter are then presented alongside specific opportunities for researchers from different disciplines to contribute to the field.
Collapse
Affiliation(s)
- Christopher W Barney
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003
| | - Carey E Dougan
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Kelly R McLeod
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003
| | - Amir Kazemi-Moridani
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Yue Zheng
- Department of Mechanical & Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Ziyu Ye
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Sacchita Tiwari
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Ipek Sacligil
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003
| | - Robert A Riggleman
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Shengqiang Cai
- Department of Mechanical & Aerospace Engineering, University of California San Diego, La Jolla, CA 92093;
| | - Jae-Hwang Lee
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA 01003;
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003;
| | - Gregory N Tew
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003;
| | - Alfred J Crosby
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003;
| |
Collapse
|
14
|
Barney CW, Zheng Y, Wu S, Cai S, Crosby AJ. Residual strain effects in needle-induced cavitation. SOFT MATTER 2019; 15:7390-7397. [PMID: 31469148 DOI: 10.1039/c9sm01173k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Needle-induced cavitation (NIC) locally probes the elastic and fracture properties of soft materials, such as gels and biological tissues. Current NIC protocols tend to overestimate properties when compared to traditional techniques. New NIC methods are needed in order to address this issue. NIC measurements consist of two distinct processes, namely (1) the needle insertion process and (2) the cavitation process. The cavitation process is hypothesized to be highly dependent on the initial needle insertion process due to the influence of residual strain below the needle. Retracting the needle before pressurization to a state in which a cylindrical, tube-like fracture is left below the needle tip is experimentally demonstrated to reduce the impact of residual strain on NIC. Verification of the critical cavitation pressure equation in this new geometry is necessary before implementing this retraction NIC protocol. Complementary modeling shows that the change in initial geometry has little effect on the critical cavitation pressure. Together, these measurements demonstrate that needle retraction is a viable experimental protocol for reducing the influence of residual strain, thus enabling the confident measurement of local elastic and fracture properties in soft gels and tissues.
Collapse
Affiliation(s)
- Christopher W Barney
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
15
|
Bustamante MC, Cronin DS. Cavitation threshold evaluation of porcine cerebrospinal fluid using a Polymeric Split Hopkinson Pressure Bar-Confinement chamber apparatus. J Mech Behav Biomed Mater 2019; 100:103400. [PMID: 31476553 DOI: 10.1016/j.jmbbm.2019.103400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 01/16/2023]
Abstract
Studies investigating mild Traumatic Brain Injury (mTBI) in the military population using experimental head surrogates and Finite Element (FE) head models have demonstrated the existence of transient negative pressures occurring within the head at the contrecoup location to the blast wave impingement. It has been hypothesized that this negative pressure may cause cavitation of cerebrospinal fluid (CSF) and possibly lead to brain tissue damage from cavitation bubble collapse. The cavitation pressure threshold of human CSF is presently unknown, although existing FE studies in the literature have assumed a value of -100 kPa. In the present study, the cavitation threshold of degassed porcine CSF at body temperature (37 °C) was measured using a unique modified Polymeric Split Hopkinson Pressure Bar apparatus, and compared to thresholds of distilled water at various conditions. The loading pulse generated in the apparatus was comparable to experimentally measured pressures resulting from blast exposure, and those predicted by an FE model. The occurrence of cavitation was identified using high-speed imaging and the corresponding pressures were determined using a computational model of the apparatus that was previously developed and validated. The probability of cavitation was calculated (ISO/TS, 18506) from forty-one experimental tests on porcine CSF, representing an upper bound for in vivo CSF. The 50% probability of cavitation for CSF (-0.467 MPa ± 7%) was lower than that of distilled water (-1.37 MPa ± 16%) under the same conditions. The lesser threshold of CSF could be related to the constituents such as blood cells and proteins. The results of this study can be used to inform FE head models subjected to blast exposure and improve prediction of the potential for CSF cavitation and response of brain tissue.
Collapse
Affiliation(s)
- M C Bustamante
- Department of Mechanical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L3G1, Canada.
| | - D S Cronin
- Department of Mechanical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L3G1, Canada.
| |
Collapse
|
16
|
Wrede AH, Shah A, McNamara MC, Montazami R, Hashemi NN. Controlled positioning of microbubbles and induced cavitation using a dual-frequency transducer and microfiber adhesion techniques. ULTRASONICS SONOCHEMISTRY 2018; 43:114-119. [PMID: 29555266 DOI: 10.1016/j.ultsonch.2018.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
We report a study on two methods that enable spatial control and induced cavitation on targeted microbubbles (MBs). Cavitation is known to be present in many situations throughout nature. This phenomena has been proven to have the energy to erode alloys, like steel, in propellers and turbines. It is recently theorized that cavitation occurs inside the skull during a traumatic-brain injury (TBI) situation. Controlled cavitation methods could help better understand TBIs and explain how neurons respond at moments of trauma. Both of our approaches involve an ultrasonic transducer and bio-compatible Polycaprolactone (PCL) microfibers. These methods are reproducible as well as affordable, providing more control and efficiency compared to previous techniques found in literature. We specifically model three-dimensional spatial control of individual MBs using a 1.6 MHz transducer. Using a 100 kHz transducer, we also illustrate induced cavitation on an individual MB that is adhered to the surface of a PCL microfiber. The goal of future studies will involve characterization of neuronal response to cavitation and seek to unmask its linkage with TBIs.
Collapse
Affiliation(s)
- Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Aarthy Shah
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; Center for Advanced Host Defense Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; Center for Advanced Host Defense Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
17
|
Wang M, Zhang Y, Cai C, Tu J, Guo X, Zhang D. Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters. Sci Rep 2018; 8:3885. [PMID: 29497082 PMCID: PMC5832802 DOI: 10.1038/s41598-018-22056-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/15/2018] [Indexed: 11/30/2022] Open
Abstract
Sonoporation mediated by microbubbles has being extensively studied as a promising technique to facilitate gene/drug delivery to cells. Previous studies mainly explored the membrane-level responses to sonoporation. To provide in-depth understanding on this process, various sonoporation-induced cellular responses (e.g., membrane permeabilization and cytoskeleton disassembly) generated at different impact parameters (e.g., acoustic driving pressure and microbubble-cell distances) were systemically investigated in the present work. HeLa cells, whose α-tubulin cytoskeleton was labeled by incorporation of a green fluorescence protein (GFP)-α-tubulin fusion protein, were exposed to a single ultrasound pulse (1 MHz, 20 cycles) in the presence of microbubbles. Intracellular transport via sonoporation was assessed in real time using propidium iodide and the disassembly of α-tubulin cytoskeleton was observed by fluorescence microscope. Meanwhile, the dynamics of an interacting bubble-cell pair was theoretically simulated by boundary element method. Both the experimental observations and numerical simulations showed that, by increasing the acoustic pressure or reducing the bubble-cell distance, intensified deformation could be induced in the cellular membrane, which could result in enhanced intracellular delivery and cytoskeleton disassembly. The current results suggest that more tailored therapeutic strategies could be designed for ultrasound gene/drug delivery by adopting optimal bubble-cell distances and/or better controlling incident acoustic energy.
Collapse
Affiliation(s)
- Maochen Wang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Yi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Chenliang Cai
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
- The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing, 10080, China.
| |
Collapse
|