1
|
Berni M, Marchiori G, Baleani M, Giavaresi G, Lopomo NF. Biomechanics of the Human Osteochondral Unit: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1698. [PMID: 38612211 PMCID: PMC11012636 DOI: 10.3390/ma17071698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding motion between bone segments. The OC unit is a multi-layer structure including articular cartilage, as well as subchondral and trabecular bone. The interplay between the OC tissues is essential in maintaining the joint functionality; altered loading patterns can trigger biological processes that could lead to degenerative joint diseases like osteoarthritis. Currently, no effective treatments are available to avoid degeneration beyond tissues' recovery capabilities. A thorough comprehension on the mechanical behaviour of the OC unit is essential to (i) soundly elucidate its overall response to intra-articular loads for developing diagnostic tools capable of detecting non-physiological strain levels, (ii) properly evaluate the efficacy of innovative treatments in restoring physiological strain levels, and (iii) optimize regenerative medicine approaches as potential and less-invasive alternatives to arthroplasty when irreversible damage has occurred. Therefore, the leading aim of this review was to provide an overview of the state-of-the-art-up to 2022-about the mechanical behaviour of the OC unit. A systematic search is performed, according to PRISMA standards, by focusing on studies that experimentally assess the human lower-limb joints' OC tissues. A multi-criteria decision-making method is proposed to quantitatively evaluate eligible studies, in order to highlight only the insights retrieved through sound and robust approaches. This review revealed that studies on human lower limbs are focusing on the knee and articular cartilage, while hip and trabecular bone studies are declining, and the ankle and subchondral bone are poorly investigated. Compression and indentation are the most common experimental techniques studying the mechanical behaviour of the OC tissues, with indentation also being able to provide information at the micro- and nanoscales. While a certain comparability among studies was highlighted, none of the identified testing protocols are currently recognised as standard for any of the OC tissues. The fibril-network-reinforced poro-viscoelastic constitutive model has become common for describing the response of the articular cartilage, while the models describing the mechanical behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most advanced studies have tested and modelled multiple tissues of the same OC unit but have done so individually rather than through integrated approaches. Therefore, efforts should be made in simultaneously evaluating the comprehensive response of the OC unit to intra-articular loads and the interplay between the OC tissues. In this regard, a multidisciplinary approach combining complementary techniques, e.g., full-field imaging, mechanical testing, and computational approaches, should be implemented and validated. Furthermore, the next challenge entails transferring this assessment to a non-invasive approach, allowing its application in vivo, in order to increase its diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gregorio Marchiori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Massimiliano Baleani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | | |
Collapse
|
2
|
Schwer J, Ignatius A, Seitz AM. The biomechanical properties of human menisci: A systematic review. Acta Biomater 2024; 175:1-26. [PMID: 38092252 DOI: 10.1016/j.actbio.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
Biomechanical characterization of meniscal tissue ex vivo remains a critical need, particularly for the development of suitable meniscus replacements or therapeutic strategies that target the native mechanical properties of the meniscus. To date, a huge variety of test configurations and protocols have been reported, making it extremely difficult to compare the respective outcome parameters, thereby leading to misinterpretation. Therefore, the purpose of this systematic review was to identify test-specific parameters that contribute to uncertainties in the determination of mechanical properties of the human meniscus and its attachments, which derived from common quasi-static and dynamic tests in tension, compression, and shear. Strong evidence was found that the determined biomechanical properties vary significantly depending on the specific test parameters, as indicated by up to tenfold differences in both tensile and compressive properties. Test mode (stress relaxation, creep, cyclic) and configuration (unconfined, confined, in-situ), specimen shape and dimensions, preconditioning regimes, loading rates, post-processing of experimental data, and specimen age and degeneration were identified as the most critical parameters influencing the outcome measures. In conclusion, this work highlights an unmet need for standardization and reporting guidelines to facilitate comparability and may prove beneficial for evaluating the mechanical properties of novel meniscus constructs. STATEMENT OF SIGNIFICANCE: The biomechanical properties of the human meniscus have been studied extensively over the past decades. However, it remains unclear to what extent both test protocol and specimen-related differences are responsible for the enormous variability in material properties. Therefore, this systematic review analyzes the biomechanical properties of the human meniscus in the context of the underlying testing protocol. The most sensitive parameters affecting the determination of mechanical properties were identified and critically discussed. Currently, it is of utmost importance for scientists evaluating potential meniscal scaffolds and biomaterials to have a control group rather than a direct comparison to the literature. Standardization of both test procedures and reporting requirements is needed to improve and accelerate the development of meniscal replacement constructs.
Collapse
Affiliation(s)
- Jonas Schwer
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
3
|
Küpper JC, Sullivan ES, Coope RJN, Wilson DR. Design of a double acting pneumatic cartilage loading device for magnetic resonance imaging. J Mech Behav Biomed Mater 2023; 142:105810. [PMID: 37028122 DOI: 10.1016/j.jmbbm.2023.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Studies of osteoarthritis initiation and progression that measure strain in cartilage require physiological loading levels. Many studies use magnetic resonance (MR) imaging, which necessitates a MR-compatible loading device. In this study, the design and validation of a new device, the cartilage compressive actuator (CCA), is presented. The CCA is designed for high-field (e.g., 9.4 T) small-bore MR scanners, and meets a number of design criteria. These criteria include capability for testing bone-cartilage samples, MR compatibility, constant load and incremental strain application, a water-tight specimen chamber, remote control, and real time displacement feedback. The mechanical components in the final design include an actuating piston, a connecting chamber, and a sealed specimen chamber. An electro-pneumatic system applies compression, and an optical Fibre-Bragg grating (FBG) sensor provides live displacement feedback. A logarithmic relationship was observed between force exerted by the CCA and pressure (R2 = 0.99), with a peak output force of 653 ± 2 N. The relationship between FBG sensor wavelength and displacement was linear when calibrated both outside (R2 = 0.99) and inside (R2 = 0.98) the MR scanner. Average slope was similar between the two validation tests, with a slope of -4.2 nm/mm observed inside the MR scanner and -4.3 to -4.5 nm/mm observed outside the MR scanner. This device meets all design criteria and represents an improvement over published designs. Future work should incorporate a closed feedback loop to allow for cyclical loading of specimens.
Collapse
Affiliation(s)
- Jessica C Küpper
- Department of Orthopaedics, University of British Columbia, Centre for Hip Health and Mobility, University of British Columbia and Vancouver Coastal Health Research Institute, 2635 Laurel Street, Robert H.N. Ho Research Centre, Vancouver, BC, V5Z 1M9, Canada.
| | - Emily S Sullivan
- School of Biomedical Engineering, University of British Columbia, Centre for Hip Health and Mobility, University of British Columbia and Vancouver Coastal Health Research Institute, 2635 Laurel Street, Robert H.N. Ho Research Centre, Vancouver, BC, V5Z 1M9, Canada
| | - Robin J N Coope
- Canada's Michael Genome Sciences Centre at BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - David R Wilson
- Department of Orthopaedics, University of British Columbia, Centre for Hip Health and Mobility, University of British Columbia and Vancouver Coastal Health Research Institute, 2635 Laurel Street, Robert H.N. Ho Research Centre, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
4
|
Chechik Y, Beit Ner E, Lysyy O, Tal S, Stern N, Agar G, Beer Y, Ben-Eliezer N, Lindner D. Post-Run T 2 Mapping Changes in Knees of Adolescent Basketball Players. Cartilage 2021; 13:707S-717S. [PMID: 34128410 PMCID: PMC8808782 DOI: 10.1177/19476035211021891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE While articular cartilage defects are common incidental findings among adult athletes, the effect of running on the cartilage of adolescent athletes have rarely been assessed. This study aims to assess the variations in the articular cartilage of the knees in healthy adolescent basketball players using quantitative T2 MRI (magnetic resonance imaging). DESIGN Fifteen adolescent basketball players were recruited (13.8 ± 0.5 years old). Girls were excluded to avoid potential gender-related confounding effects. Players underwent a pre-run MRI scan of both knees. All participants performed a 30-minute run on a treadmill. Within 15 minutes after completion of their run, players underwent a second, post-run MRI scan. Quantitative T2 maps were generated using the echo modulation curve (EMC) algorithm. Pre-run scans and post-run scans were compared using paired t test. RESULTS Participants finished their 30-minute run with a mean running distance of 5.77 ± 0.42 km. Pre-run scans analysis found statistically significant (P < 0.05) changes in 3 regions of the knee lateral compartment representing the cartilaginous tissue. No differences were found in the knee medial compartment. Post-run analysis showed lower T2 values in the medial compartment compared to the pre-run scans in several weight-bearing regions: femoral condyle central (pre/post mean values of 33.9/32.2 ms, P = 0.020); femoral condyle posterior (38.1/36.8 ms, P = 0.038); and tibial plateau posterior (34.1/31.0 ms, P < 0.001). The lateral regions did not show any significant changes. CONCLUSIONS Running leads to microstructural changes in the articular cartilage in several weight-bearing areas of the medial compartment, both in the femoral and the tibial cartilage.
Collapse
Affiliation(s)
- Yigal Chechik
- Department of Orthopedic Surgery,
Yitzhak Shamir Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of
Medicine, Tel Aviv University, Tel Aviv, Israel,Yigal Chechik, Department of Orthopedic
Surgery, Yitzhak Shamir Medical Center, Zerifin 70300, Israel.
| | - Eran Beit Ner
- Department of Orthopedic Surgery,
Yitzhak Shamir Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of
Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oleg Lysyy
- Department of Imaging, Yitzhak Shamir
Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of Medicine,
Tel-Aviv University, Tel Aviv, Israel
| | - Sigal Tal
- Department of Imaging, Yitzhak Shamir
Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of Medicine,
Tel-Aviv University, Tel Aviv, Israel
| | - Neta Stern
- Department of Biomedical Engineering,
Tel Aviv University, Tel Aviv, Israel
| | - Gabriel Agar
- Department of Orthopedic Surgery,
Yitzhak Shamir Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of
Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yiftach Beer
- Department of Orthopedic Surgery,
Yitzhak Shamir Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of
Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Ben-Eliezer
- Department of Biomedical Engineering,
Tel Aviv University, Tel Aviv, Israel,Sagol School of Neuroscience, Tel Aviv
University, Tel Aviv, Israel,Center for Advanced Imaging Innovation
and Research (CAI2R), New-York University Langone Medical Center, New York, NY,
USA
| | - Dror Lindner
- Department of Orthopedic Surgery,
Yitzhak Shamir Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of
Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Said O, Schock J, Abrar DB, Schad P, Kuhl C, Nolte T, Knobe M, Prescher A, Truhn D, Nebelung S. In-Situ Cartilage Functionality Assessment Based on Advanced MRI Techniques and Precise Compartmental Knee Joint Loading through Varus and Valgus Stress. Diagnostics (Basel) 2021; 11:diagnostics11081476. [PMID: 34441410 PMCID: PMC8391314 DOI: 10.3390/diagnostics11081476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Stress MRI brings together mechanical loading and MRI in the functional assessment of cartilage and meniscus, yet lacks basic scientific validation. This study assessed the response-to-loading patterns of cartilage and meniscus incurred by standardized compartmental varus and valgus loading of the human knee joint. Eight human cadaveric knee joints underwent imaging by morphologic (i.e., proton density-weighted fat-saturated and 3D water-selective) and quantitative (i.e., T1ρ and T2 mapping) sequences, both unloaded and loaded to 73.5 N, 147.1 N, and 220.6 N of compartmental pressurization. After manual segmentation of cartilage and meniscus, morphometric measures and T2 and T1ρ relaxation times were quantified. CT-based analysis of joint alignment and histologic and biomechanical tissue measures served as references. Under loading, we observed significant decreases in cartilage thickness (p < 0.001 (repeated measures ANOVA)) and T1ρ relaxation times (p = 0.001; medial meniscus, lateral tibia; (Friedman test)), significant increases in T2 relaxation times (p ≤ 0.004; medial femur, lateral tibia; (Friedman test)), and adaptive joint motion. In conclusion, varus and valgus stress MRI induces meaningful changes in cartilage and meniscus secondary to compartmental loading that may be assessed by cartilage morphometric measures as well as T2 and T1ρ mapping as imaging surrogates of tissue functionality.
Collapse
Affiliation(s)
- Oliver Said
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
- Correspondence:
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
| | - Philipp Schad
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Teresa Nolte
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Matthias Knobe
- Department of Orthopedic and Trauma Surgery, Lucerne Cantonal Hospital, 6000, Lucerne, Switzerland;
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| |
Collapse
|
6
|
Huppertz MS, Schock J, Radke KL, Abrar DB, Post M, Kuhl C, Truhn D, Nebelung S. Longitudinal T2 Mapping and Texture Feature Analysis in the Detection and Monitoring of Experimental Post-Traumatic Cartilage Degeneration. Life (Basel) 2021; 11:life11030201. [PMID: 33807740 PMCID: PMC8000874 DOI: 10.3390/life11030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Traumatic cartilage injuries predispose articulating joints to focal cartilage defects and, eventually, posttraumatic osteoarthritis. Current clinical-standard imaging modalities such as morphologic MRI fail to reliably detect cartilage trauma and to monitor associated posttraumatic degenerative changes with oftentimes severe prognostic implications. Quantitative MRI techniques such as T2 mapping are promising in detecting and monitoring such changes yet lack sufficient validation in controlled basic research contexts. Material and Methods: 35 macroscopically intact cartilage samples obtained from total joint replacements were exposed to standardized injurious impaction with low (0.49 J, n = 14) or high (0.98 J, n = 14) energy levels and imaged before and immediately, 24 h, and 72 h after impaction by T2 mapping. Contrast, homogeneity, energy, and variance were quantified as features of texture on each T2 map. Unimpacted controls (n = 7) and histologic assessment served as reference. Results: As a function of impaction energy and time, absolute T2 values, contrast, and variance were significantly increased, while homogeneity and energy were significantly decreased. Conclusion: T2 mapping and texture feature analysis are sensitive diagnostic means to detect and monitor traumatic impaction injuries of cartilage and associated posttraumatic degenerative changes and may be used to assess cartilage after trauma to identify “cartilage at risk”.
Collapse
Affiliation(s)
- Marc Sebastian Huppertz
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
- Correspondence:
| |
Collapse
|
7
|
Schad P, Wollenweber M, Thüring J, Schock J, Eschweiler J, Palm G, Radermacher K, Eckstein F, Prescher A, Kuhl C, Truhn D, Nebelung S. Magnetic resonance imaging of human knee joint functionality under variable compressive in-situ loading and axis alignment. J Mech Behav Biomed Mater 2020; 110:103890. [DOI: 10.1016/j.jmbbm.2020.103890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
|
8
|
Hafner T, Schock J, Post M, Abrar DB, Sewerin P, Linka K, Knobe M, Kuhl C, Truhn D, Nebelung S. A serial multiparametric quantitative magnetic resonance imaging study to assess proteoglycan depletion of human articular cartilage and its effects on functionality. Sci Rep 2020; 10:15106. [PMID: 32934341 PMCID: PMC7492285 DOI: 10.1038/s41598-020-72208-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Water, collagen, and proteoglycans determine articular cartilage functionality. If altered, susceptibility to premature degeneration is increased. This study investigated the effects of enzymatic proteoglycan depletion on cartilage functionality as assessed by advanced Magnetic Resonance Imaging (MRI) techniques under standardized loading. Lateral femoral condylar cartilage-bone samples from patients undergoing knee replacement (n = 29) were serially imaged by Proton Density-weighted and T1, T1ρ, T2, and T2* mapping sequences on a clinical 3.0 T MRI scanner (Achieva, Philips). Using pressure-controlled indentation loading, samples were imaged unloaded and quasi-statically loaded to 15.1 N and 28.6 N, and both before and after exposure to low-concentrated (LT, 0.1 mg/mL, n = 10) or high-concentrated trypsin (HT, 1.0 mg/mL, n = 10). Controls were not treated (n = 9). Responses to loading were assessed for the entire sample and regionally, i.e. sub- and peri-pistonally, and zonally, i.e. upper and lower sample halves. Trypsin effects were quantified as relative changes (Δ), analysed using appropriate statistical tests, and referenced histologically. Histological proteoglycan depletion was reflected by significant sub-pistonal decreases in T1 (p = 0.003) and T2 (p = 0.008) after HT exposure. Loading-induced changes in T1ρ and T2* were not related. In conclusion, proteoglycan depletion alters cartilage functionality and may be assessed using serial T1 and T2 mapping under loading.
Collapse
Affiliation(s)
- Tobias Hafner
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Justus Schock
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany.,Institute of Computer Vision and Imaging, RWTH University Aachen, Aachen, Germany
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Benjamin Abrar
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Philipp Sewerin
- Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kevin Linka
- Department of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Matthias Knobe
- Clinic for Orthopaedic and Trauma Surgery, Cantonal Hospital Luzern, Luzern, Switzerland
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Sven Nebelung
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany.
| |
Collapse
|