1
|
Guendouz Y, Razif NAM, Bernasconi F, Brien GO, Johnston RD, Lally C. Simulating atherosclerotic plaque mechanics using polyvinyl alcohol (PVA) cryogel artery phantoms, ultrasound imaging and inverse finite element analysis. Phys Med Biol 2024; 69:245020. [PMID: 39626619 DOI: 10.1088/1361-6560/ad9a4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The clinical decision to establish if a patient with carotid disease should undergo surgical intervention is primarily based on the percent stenosis. Whilst this applies for high-grade stenosed vessels (>70%), it falls short for other cases. Due to the heterogeneity of plaque tissue, probing the mechanics of the tissue would likely provide further insights into why some plaques are more prone to rupture. Mechanical characterization of such tissue is nontrivial, however, due to the difficulties in collecting fresh, intact plaque tissue and using physiologically relevant mechanical testing of such material. The use of polyvinyl alcohol (PVA) cryogel is thus highly convenient because of its acoustic properties and tunable mechanical properties.Methods.The aim of this study is to demonstrate the potential of PVA phantoms to simulate atherosclerotic features. In addition, a testing and simulation framework is developed for full PVA vessel material characterization using ring tensile testing and inflation testing combined with non-invasive ultrasound imaging and computational modeling.Results.Strain stiffening behavior was observed in PVA through ring tensile tests, particularly at high (n= 6) freeze-thaw cycles (FTCs). Inflation testing of bi-layered phantoms featuring lipid pool inclusions demonstrated high strains at shoulder regions. The application of an inverse finite element framework successfully recovered boundaries and determined the shear moduli for the PVA wall to lie within the range 27-53 kPa.Conclusion.The imaging-modeling framework presented facilitates the use and characterization of arterial mimicking phantoms to further explore plaque rupture. It also shows translational potential for non-invasive mechanical characterization of atherosclerotic plaques to improve the identification of clinically relevant metrics of plaque vulnerability.
Collapse
Affiliation(s)
- Yasmine Guendouz
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Noor Adeebah Mohamed Razif
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Floriane Bernasconi
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gordon O' Brien
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Robert D Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Tornifoglio B, Johnston RD, Stone AJ, Kerskens C, Lally C. Microstructural and mechanical insight into atherosclerotic plaques: an ex vivo DTI study to better assess plaque vulnerability. Biomech Model Mechanobiol 2023; 22:1515-1530. [PMID: 36652053 PMCID: PMC10511397 DOI: 10.1007/s10237-022-01671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
Non-invasive microstructural characterisation has the potential to determine the stability, or lack thereof, of atherosclerotic plaques and ultimately aid in better assessing plaques' risk to rupture. If linked with mechanical characterisation using a clinically relevant imaging technique, mechanically sensitive rupture risk indicators could be possible. This study aims to provide this link-between a clinically relevant imaging technique and mechanical characterisation within human atherosclerotic plaques. Ex vivo diffusion tensor imaging, mechanical testing, and histological analysis were carried out on human carotid atherosclerotic plaques. DTI-derived tractography was found to yield significant mechanical insight into the mechanical properties of more stable and more vulnerable microstructures. Coupled with insights from digital image correlation and histology, specific failure characteristics of different microstructural arrangements furthered this finding. More circumferentially uniform microstructures failed at higher stresses and strains when compared to samples which had multiple microstructures, like those seen in a plaque cap. The novel findings in this study motivate diagnostic measures which use non-invasive characterisation of the underlying microstructure of plaques to determine their vulnerability to rupture.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R D Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A J Stone
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Medical Physics and Clinical Engineering, St. Vincent's University Hospital, Dublin, Ireland
| | - C Kerskens
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Johnston RD, Ghasemi M, Lally C. Inverse material parameter estimation of patient-specific finite element models at the carotid bifurcation: The impact of excluding the zero-pressure configuration and residual stress. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3663. [PMID: 36443952 PMCID: PMC10078390 DOI: 10.1002/cnm.3663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The carotid bifurcation experiences a complex loading environment due to its anatomical structure. Previous in-vivo material parameter estimation methods often use simplified model geometries, isotropic hyperelastic constitutive equations or neglect key aspects of the vessel, such as the zero-pressure configuration or residual stress, all of which have independently been shown to alter the stress environment of the vessel wall. Characterizing the location of high stress in the vessel wall has often been proposed as a potential indicator of structural weakness. However, excluding the afore-mentioned zero-pressure configuration, residual stress and patient-specific material parameters can lead to an incorrect estimation of the true stress values observed, meaning that stress alone as a risk indicator of rupture is insufficient. In this study, we investigate how the estimated material parameters and overall stress distributions in geometries of carotid bifurcations, extracted from in-vivo MR images, alter with the inclusion of the zero-pressure configuration and residual stress. This approach consists of the following steps: (1) geometry segmentation and hexahedral meshing from in-vivo magnetic resonance images (MRI) at two known phases; (2) computation of the zero-pressure configuration and the associated residual stresses; (3) minimization of an objective function built on the difference between the stress states of an "almost true" stress field at two known phases and a "deformed" stress field by altering the input material parameters to determine patient-specific material properties; and (4) comparison of the stress distributions throughout these carotid bifurcations for all cases with estimated material parameters. This numerical approach provides insights into the need for estimation of both the zero-pressure configuration and residual stress for accurate material property estimation and stress analysis for the carotid bifurcation, establishing the reliability of stress as a rupture risk metric.
Collapse
Affiliation(s)
- Robert D. Johnston
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Milad Ghasemi
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland, Trinity College DublinDublinIreland
| |
Collapse
|