1
|
Saini RS, Vaddamanu SK, Dermawan D, Mosaddad SA, Heboyan A. Investigating the role of temperature and moisture on the degradation of 3D-printed polymethyl methacrylate dental materials through molecular dynamics simulations. Sci Rep 2024; 14:26079. [PMID: 39478155 PMCID: PMC11526103 DOI: 10.1038/s41598-024-77736-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
This study aimed to comprehensively investigate the degradation behavior of 3D printed polymethyl methacrylate (PMMA) dental materials, with a specific focus on the influential factors of temperature and moisture, by employing molecular dynamics simulations. Owing to their aesthetic properties, 3D-printed PMMA dental materials play a pivotal role in dental applications. However, understanding their degradation mechanisms, particularly in the context of temperature and moisture variations, is crucial for their long-term durability. A Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was utilized for the molecular dynamics simulations. The simulation setup included temperature variations from 300 to 600 K and relative humidity (RH) levels ranging from 20 to 100%. Various mechanical properties and structural changes were analyzed to determine the degradation behavior. Energetic profiling during equilibration and the subsequent temperature variations were studied. The spatial distribution of the mean squared displacement, non-bond energy, Young's modulus, bending stress, and volume expansion coefficient of the particles were quantitatively analyzed, revealing temperature- and moisture-dependent trends. The study concluded that temperature and moisture significantly affected the degradation behavior of 3D-printed PMMA dental materials. Higher temperatures and increased humidity levels contribute to reduced mechanical strength and altered structural properties, emphasizing the importance of controlling environmental conditions during fabrication.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
- Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia.
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yang X, Guo J, Li Y, Yang X. Compressive Fracture Behavior of Zirconia/Resin Composites Prepared by Fused Deposition Modeling Combined with Vacuum Infiltration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1989. [PMID: 38730798 PMCID: PMC11084415 DOI: 10.3390/ma17091989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Although bioceramic materials exhibit good biocompatibilities and bone conductivities, their high brittleness and low toughness properties limit their applications. Zirconia (ZrO2)/resin composites with idealized structures and properties were prepared by fused deposition modeling (FDM) combined with a vacuum infiltration process. The porous structure was prepared using the FDM three-dimensional printing technology, with granular zirconia as the raw material, and the relationship between the pore shape, pore size, and deformation was discussed. The results showed that square pores were more suitable than honeycomb pores for printing small pore sizes, and the resolution was high. Scanning electron microscopy observations showed that the superposition of multiple printing paths promoted the emergence of hole defects. The effects of the resin and the pore shape on the compressive strengths of the composites were studied. It was found that the compressive strengths of the honeycomb pore ZrO2/resin composites and porous ceramics were superior to those of the square pore samples. The introduction of the resin had a significant effect on the compressive strengths of the composites. The compressive strength increased in the direction perpendicular to the pores, while it decreased in the direction parallel to the pores.
Collapse
Affiliation(s)
- Xiaole Yang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430080, China;
| | - Jinyu Guo
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410014, China;
| | - Yuanbing Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430080, China;
- National-Provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xianfeng Yang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410014, China;
| |
Collapse
|
3
|
Wang Y, Xiao S, Lv S, Wang X, Wei R, Ma Y. Mechanical and Antimicrobial Properties of Boron Nitride/Methacrylic Acid Quaternary Ammonium Composites Reinforced Dental Flowable Resins. ACS Biomater Sci Eng 2024; 10:1796-1807. [PMID: 38346133 DOI: 10.1021/acsbiomaterials.3c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dental resin composites (DRCs) are commonly used to restore teeth affected by dental caries or defects. These materials must possess excellent properties to withstand the complex oral environment. The objective of this study was to prepare and characterize Boron nitride nanosheets (BNN)/ dimethyl amino hexadecyl methacrylate (DMAHDM) composites (BNN/DMA), and to evaluate them as functional fillers to enhance the mechanical and antimicrobial properties of dental resins. The BNN/DMA composites were successfully prepared under the theoretical guidance of molecular dynamics (MD), and then the physicochemical and morphological characterization of the BNN/DMA composites were carried out by using various test methods, such as FT-IR, XRD, UV-vis spectroscopy, SEM, TEM, and AFM. It was doped into the dental flowable resin in a certain proportion, and the results showed that the flexural strength (FS), elastic modulus (EM), compressive strength (CS), and microhardness (MH) of the modified resin composites were increased by 53.29, 47.8, 97.59, and 37.1%, respectively, with the addition of 0.8 wt % of BNN/DMA composite fillers. It has a good inhibition effect on Streptococcus mutans, with an inhibition rate as high as 90.43%. Furthermore, this effect persists even after one month of aging. In conclusion, the modification of flowable resins with low-concentration BNN/DMA composites favorably integrates the mechanical properties and long-term antimicrobial activity of dental resins. At the same time, they have good biocompatibility and do not affect the aesthetics. The BNN/DMA composite modified flowable resin has the potential to become a new type of antimicrobial dental restorative material.
Collapse
Affiliation(s)
- Yuting Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Shengjie Xiao
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Siyi Lv
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xiuzhi Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Rong Wei
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Yu Ma
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, PR China
- Biointerfaces Institute, University of Michigan, Ann Arbor,Michigan 48109, United States
| |
Collapse
|
4
|
Park GT, Ko KH, Huh YH, Park CJ, Cho LR. Flexural strength and translucency of barium-silicate-filled resin nanoceramics for additive manufacturing. J ESTHET RESTOR DENT 2024; 36:445-452. [PMID: 37671774 DOI: 10.1111/jerd.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE This in vitro study aimed to evaluate the flexural strength (FS) and translucency parameter (TP) of resin nanoceramics (RNCs) with barium silicate for additive manufacturing. MATERIALS AND METHODS An RNC slurry was prepared by mixing a barium silicate filler and resin monomer. For the FS tests, specimens with three filler contents (0, 50, and 63 wt%) were designed according to ISO6872 for dental ceramics and ISO10477 for dental polymers. These specimens were then formed into discs with thicknesses of 1 and 2 mm for TP measurement. RESULTS In the specimens prepared according to ISO6872, the FS increased significantly depending on the filler content. However, in the case of ISO10477, there was no significant difference between the FSs of the specimens with 0 and 50 wt% filler contents. The increase in thickness affected translucency, and the lowest translucency was obtained at a filler content of 63 wt%. The filler distribution was dense in the specimen with 63 wt% filler and uniform but relatively sparse in the specimen with 50 wt% filler. More voids were observed in the specimen with 63 wt% filler. The thickness and filler content of the specimen affected its TP. The TP of the specimen with 63 wt% filler was similar to that of human enamel. CONCLUSION The FS was significantly higher at a filler content of 63 wt%. The lowest translucency was obtained at a filler content of 63 wt% for all tested thicknesses. CLINICAL SIGNIFICANCE Increasing the filler content was advantageous for the mechanical properties of the RNCs. A high filler content led to low translucency in the RNCs. Therefore, the esthetics of human teeth can be reproduced if layering according to the filler content is performed in areas where esthetic characteristics are required.
Collapse
Affiliation(s)
- Geun-Taek Park
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kyung-Ho Ko
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yoon-Hyuk Huh
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Chan-Jin Park
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Lee-Ra Cho
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
5
|
Leung BAY, Joe W, Mofarah SS, Sorrell CC, Abbasi R, Azadeh M, Arsecularatne JA, Koshy P. Unveiling the mechanisms behind surface degradation of dental resin composites in simulated oral environments. J Mater Chem B 2023; 11:7707-7720. [PMID: 37465918 DOI: 10.1039/d3tb00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Dental resin composites are widely used as restorative materials due to their natural aesthetic and versatile properties. However, there has been limited research on the degradation mechanisms of these composites in gastric acid environments, which would be common in patients with gastroesophageal reflux. This study aims to investigate the degradation behavior of dental composites immersed in simulated oral environments, including acid, saliva, and water. Mechanical and morphological properties of the composites, upon immersion in the simulated environments, were thoroughly examined using hardness testing and SEM imaging. Qualitative analyses of the ions leached from the polymer matrix and fillers were conducted using XPS and ICP-MS. In addition, the thermodynamic stability of the inorganic fillers of the composites in aqueous solutions across a wide range of pH values was theoretically studied through construction of Pourbaix diagrams. This study proposed a mechanism for composite leaching involving interactions between the matrix's hydrophilic groups and the aqueous immersion media, leading to swelling and chemical degradation of the composites. Furthermore, it was demonstrated that filler leaching was followed by ion exchange with Ca and P, resulting in the formation of hard calcified layers on the composite surface. The current findings provide valuable insights into the development of new composite materials with improved durability and resistance to degradation, especially for patients suffering from gastroesophageal reflux.
Collapse
Affiliation(s)
- Brenda Ah-Yan Leung
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
| | - William Joe
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Roozbeh Abbasi
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Mohsen Azadeh
- School of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|