1
|
Xin H, Ferguson BM, Wan B, Al Maruf DSA, Lewin WT, Cheng K, Kruse HV, Leinkram D, Parthasarathi K, Wise IK, Froggatt C, Crook JM, McKenzie DR, Li Q, Clark JR. A Preclinical Trial Protocol Using an Ovine Model to Assess Scaffold Implant Biomaterials for Repair of Critical-Sized Mandibular Defects. ACS Biomater Sci Eng 2024; 10:2863-2879. [PMID: 38696332 DOI: 10.1021/acsbiomaterials.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The present work describes a preclinical trial (in silico, in vivo and in vitro) protocol to assess the biomechanical performance and osteogenic capability of 3D-printed polymeric scaffolds implants used to repair partial defects in a sheep mandible. The protocol spans multiple steps of the medical device development pipeline, including initial concept design of the scaffold implant, digital twin in silico finite element modeling, manufacturing of the device prototype, in vivo device implantation, and in vitro laboratory mechanical testing. First, a patient-specific one-body scaffold implant used for reconstructing a critical-sized defect along the lower border of the sheep mandible ramus was designed using on computed-tomographic (CT) imagery and computer-aided design software. Next, the biomechanical performance of the implant was predicted numerically by simulating physiological load conditions in a digital twin in silico finite element model of the sheep mandible. This allowed for possible redesigning of the implant prior to commencing in vivo experimentation. Then, two types of polymeric biomaterials were used to manufacture the mandibular scaffold implants: poly ether ether ketone (PEEK) and poly ether ketone (PEK) printed with fused deposition modeling (FDM) and selective laser sintering (SLS), respectively. Then, after being implanted for 13 weeks in vivo, the implant and surrounding bone tissue was harvested and microCT scanned to visualize and quantify neo-tissue formation in the porous space of the scaffold. Finally, the implant and local bone tissue was assessed by in vitro laboratory mechanical testing to quantify the osteointegration. The protocol consists of six component procedures: (i) scaffold design and finite element analysis to predict its biomechanical response, (ii) scaffold fabrication with FDM and SLS 3D printing, (iii) surface treatment of the scaffold with plasma immersion ion implantation (PIII) techniques, (iv) ovine mandibular implantation, (v) postoperative sheep recovery, euthanasia, and harvesting of the scaffold and surrounding host bone, microCT scanning, and (vi) in vitro laboratory mechanical tests of the harvested scaffolds. The results of microCT imagery and 3-point mechanical bend testing demonstrate that PIII-SLS-PEK is a promising biomaterial for the manufacturing of scaffold implants to enhance the bone-scaffold contact and bone ingrowth in porous scaffold implants. MicroCT images of the harvested implant and surrounding bone tissue showed encouraging new bone growth at the scaffold-bone interface and inside the porous network of the lattice structure of the SLS-PEK scaffolds.
Collapse
Affiliation(s)
- Hai Xin
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ben M Ferguson
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - Boyang Wan
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - William T Lewin
- Arto Hardy Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Kai Cheng
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Hedi V Kruse
- Arto Hardy Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Physics, Faculty of Science, The University of Sydney, Syndey, NSW 2006, Australia
| | - David Leinkram
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Krishnan Parthasarathi
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Innes K Wise
- Laboratory Animal Services, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Catriona Froggatt
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Jeremy M Crook
- Arto Hardy Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW 2519, Australia
| | - David R McKenzie
- Arto Hardy Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Physics, Faculty of Science, The University of Sydney, Syndey, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW 2006, Australia
- Centre for Advanced Materials Technology, The University of Sydney, Darlington, NSW 2006, Australia
| | - Jonathan R Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW 2050, Australia
| |
Collapse
|
2
|
Aftabi H, Zaraska K, Eghbal A, McGregor S, Prisman E, Hodgson A, Fels S. Computational models and their applications in biomechanical analysis of mandibular reconstruction surgery. Comput Biol Med 2024; 169:107887. [PMID: 38160502 DOI: 10.1016/j.compbiomed.2023.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Advanced head and neck cancers involving the mandible often require surgical removal of the diseased parts and replacement with donor bone or prosthesis to recreate the form and function of the premorbid mandible. The degree to which this reconstruction successfully replicates key geometric features of the original bone critically affects the cosmetic and functional outcomes of speaking, chewing, and breathing. With advancements in computational power, biomechanical modeling has emerged as a prevalent tool for predicting the functional outcomes of the masticatory system and evaluating the effectiveness of reconstruction procedures in patients undergoing mandibular reconstruction surgery. These models offer cost-effective and patient-specific treatment tailored to the needs of individuals. To underscore the significance of biomechanical modeling, we conducted a review of 66 studies that utilized computational models in the biomechanical analysis of mandibular reconstruction surgery. The majority of these studies employed finite element method (FEM) in their approach; therefore, a detailed investigation of FEM has also been provided. Additionally, we categorized these studies based on the main components analyzed, including bone flaps, plates/screws, and prostheses, as well as their design and material composition.
Collapse
Affiliation(s)
- Hamidreza Aftabi
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Katrina Zaraska
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Atabak Eghbal
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Sophie McGregor
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Eitan Prisman
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Antony Hodgson
- Department of Mechanical Engineering, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Sidney Fels
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| |
Collapse
|
3
|
Zhu H, Wang J, Wang S, Yang Y, Chen M, Luan Q, Liu X, Lin Z, Hu J, Man K, Zhang J. Additively manufactured bioceramic scaffolds based on triply periodic minimal surfaces for bone regeneration. J Tissue Eng 2024; 15:20417314241244997. [PMID: 38617462 PMCID: PMC11010742 DOI: 10.1177/20417314241244997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
The study focused on the effects of a triply periodic minimal surface (TPMS) scaffolds, varying in porosity, on the repair of mandibular defects in New Zealand white rabbits. Four TPMS configurations (40%, 50%, 60%, and 70% porosity) were fabricated with β-tricalcium phosphate bioceramic via additive manufacturing. Scaffold properties were assessed through scanning electron microscopy and mechanical testing. For proliferation and adhesion assays, mouse bone marrow stem cells (BMSCs) were cultured on these scaffolds. In vivo, the scaffolds were implanted into rabbit mandibular defects for 2 months. Histological staining evaluated osteogenic potential. Moreover, RNA-sequencing analysis and RT-qPCR revealed the significant involvement of angiogenesis-related factors and Hippo signaling pathway in influencing BMSCs behavior. Notably, the 70% porosity TPMS scaffold exhibited optimal compressive strength, superior cell proliferation, adhesion, and significantly enhanced osteogenesis and angiogenesis. These findings underscore the substantial potential of 70% porosity TPMS scaffolds in effectively promoting bone regeneration within mandibular defects.
Collapse
Affiliation(s)
- Hong Zhu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Jinsi Wang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Shengfa Wang
- Dalian University of Technology, Dalian, P.R. China
| | - Yue Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Meiyi Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Qifei Luan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Xiaochuan Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Ziheng Lin
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Jiaqi Hu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Urecht, Utrecht, The Netherlands
| | - Jingying Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| |
Collapse
|
4
|
Liu L, Wu J, Lv S, Xu D, Li S, Hou W, Wang C, Yu D. Synergistic effect of hierarchical topographic structure on 3D-printed Titanium scaffold for enhanced coupling of osteogenesis and angiogenesis. Mater Today Bio 2023; 23:100866. [PMID: 38149019 PMCID: PMC10750103 DOI: 10.1016/j.mtbio.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 12/28/2023] Open
Abstract
The significance of the osteogenesis-angiogenesis relationship in the healing process of bone defects has been increasingly emphasized in recent academic research. Surface topography plays a crucial role in guiding cellular behaviors. Metal-organic framework (MOF) is an innovative biomaterial with nanoscale structural and topological features, enabling the modulation of scaffold physicochemical properties. This study involved the loading of varying quantities of UiO-66 nanocrystals onto alkali-heat treated 3D-printed titanium scaffolds, resulting in the formation of hierarchical micro/nano topography named UiO-66/AHTs. The physicochemical properties of these scaffolds were subsequently characterized. Furthermore, the impact of these scaffolds on the osteogenic potential of BMSCs, the angiogenic potential of HUVECs, and their intercellular communication were investigated. The findings of this study indicated that 1/2UiO-66/AHT outperformed other groups in terms of osteogenic and angiogenic induction, as well as in promoting intercellular crosstalk by enhancing paracrine effects. These results suggest a promising biomimetic hierarchical topography design that facilitates the coupling of osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Leyi Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiyu Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Duoling Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
5
|
Entezari A, Liu NC, Zhang Z, Fang J, Wu C, Wan B, Swain M, Li Q. Nondeterministic multiobjective optimization of 3D printed ceramic tissue scaffolds. J Mech Behav Biomed Mater 2023; 138:105580. [PMID: 36509011 DOI: 10.1016/j.jmbbm.2022.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Despite significant advances in the design optimization of bone scaffolds for enhancing their biomechanical properties, the functionality of these synthetic constructs remains suboptimal. One of the main challenges in the structural optimization of bone scaffolds is associated with the large uncertainties caused by the manufacturing process, such as variations in scaffolds' geometric features and constitutive material properties after fabrication. Unfortunately, such non-deterministic issues have not been considered in the existing optimization frameworks, thereby limiting their reliability. To address this challenge, a novel multiobjective robust optimization approach is proposed here such that the effects of uncertainties on the optimized design can be minimized. This study first conducted computational analyses of a parameterized ceramic scaffold model to determine its effective modulus, structural strength, and permeability. Then, surrogate models were constructed to formulate explicit mathematical relationships between the geometrical parameters (design variables) and mechanical and fluidic properties. The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was adopted to generate the robust Pareto solutions for an optimal set of trade-offs between the competing objective functions while ensuring the effects of the noise parameters to be minimal. Note that the nondeterministic optimization of tissue scaffold presented here is the first of its kind in open literature, which is expected to shed some light on this significant topic of scaffold design and additive manufacturing in a more realistic way.
Collapse
Affiliation(s)
- Ali Entezari
- School of Biomedical Engineering, University of Technology Sydney, NSW, 2007, Australia.
| | - Nai-Chun Liu
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Zhongpu Zhang
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Jianguang Fang
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Boyang Wan
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Michael Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia.
| |
Collapse
|
6
|
Wan B, Yoda N, Zheng K, Zhang Z, Wu C, Clark J, Sasaki K, Swain M, Li Q. On interaction between fatigue of reconstruction plate and time-dependent bone remodeling. J Mech Behav Biomed Mater 2022; 136:105483. [PMID: 36302272 DOI: 10.1016/j.jmbbm.2022.105483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE The fibula free flap (FFF) has been extensively used to repair large segmental bone defects in the maxillofacial region. The reconstruction plate plays a key role in maintaining stability and load-sharing while the fibula unites with adjacent bone in the course of healing and remodeling. However, not all fibula flaps would fully unite, and fatigue of prosthetic devices has been recognized as one major concern for long-term load-bearing applications. This study aims to develop a numerical approach for predicting the fatigue life of the reconstruction plate by taking into account the effect of ongoing bone remodeling. METHODS The patient-specific mandible reconstruction with a prosthetic system is studied in this work. The 3D finite element model with heterogeneous material properties obtained from clinical computerized tomography (CT) data is developed for bone, and eXtended Finite Element Method (XFEM) is adopted for the fatigue analysis of the plate. During the remodeling process, the changing apparent density and Young's modulus of bone are simulated in a step-wise fashion on the basis of Wolff's law, which is correlated with the specific clinical follow-up. The maximum biting forces were considered as the driving force on the bone remodeling, which are measured clinically at different time points (4, 16 and 28 months) after reconstruction surgery. RESULTS Under various occlusal loadings, the interaction between fatigue crack growth and bone remodeling is investigated to gain new insights for the future design of prosthetic devices. The simulation results reveal that appropriate remodeling of grafted bone could extend the fatigue life of fixation plates in a positive way. On the other hand, the rising occlusal load associated with healing and remodeling could lead to fatigue fracture of fixation plate and potentially cause severe bone resorption. CONCLUSION This study proposes an effective approach for more realistically predicting fatigue life of prosthetic devices subject to a tissue remodeling condition in-silico. It is anticipated to provide a guideline for deriving an optimal design of patient-specific prosthetic devices to better ensure longevity.
Collapse
Affiliation(s)
- Boyang Wan
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia.
| | - Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808575, Japan.
| | - Keke Zheng
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, EX4 4QF, United Kingdom.
| | - Zhongpu Zhang
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, 2751, Australia.
| | - Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia.
| | - Jonathan Clark
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW, 15, Australia.
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808575, Japan.
| | - Michael Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia.
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
Liu R, Su Y, Yang W, Wang G, Du R, Zhong Y. Evaluation of Porous Titanium Structures and Lightweight for Mandibular Prosthesis. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Ouldyerou A, Mehboob H, Merdji A, Aminallah L, Mehboob A, Mukdadi OM. Biomechanical analysis of printable functionally graded material (FGM) dental implants for different bone densities. Comput Biol Med 2022; 150:106111. [PMID: 36195043 DOI: 10.1016/j.compbiomed.2022.106111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
The long-term success of a dental implant is related to the material and design of the implant, and bone density. Conventional implants cause stress-shielding due to a mismatch between the implant and bone stiffness. Functionally graded porous materials and designs are a great choice for the design of implants to control the local stiffness at a certain location to meet the biomechanical requirements. The purpose of this study is to analyze five designs of axial and radial functionally graded materials (FGM) implants besides the conventional implant and conical and cylindrical shapes that were simulated with five different bone densities. The results showed that strain in bone increased with a decrease in cancellous bone density. The shape of the implant did not play an important role in strain/stress distribution. Conventional implants showed optimal strain (1000-2240 με) in low-density (0.7-0.8 g/cm3) bone, however, FGM implants produced optimal strain (990-1280 με) in the high-density bone (0.9-1 g/cm3) as compared to conventional implants. The proposed designs of FGM implants have the potential to address the complications of conventional implants in high-density bone.
Collapse
Affiliation(s)
- Abdelhak Ouldyerou
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria.
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
| | - Ali Merdji
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria; Laboratory of Mechanics Physics of Materials (LMPM), Faculty of Technology, Djillali Liabes University, Sidi Bel-Abbes, 22000, Algeria.
| | - Laid Aminallah
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria.
| | - Ali Mehboob
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, Pakistan.
| | - Osama M Mukdadi
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
9
|
Bone Remodeling Following Mandibular Reconstruction using Fibula Free Flap. J Biomech 2022; 133:110968. [DOI: 10.1016/j.jbiomech.2022.110968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 12/11/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
|