1
|
Verma D, Okhawilai M, Subramani K, Chandrasekaran K, Kasemsiri P, Uyama H. Cefixime loaded bare and functionalized halloysite nanocarriers and their biomedical applications. ENVIRONMENTAL RESEARCH 2024; 252:118927. [PMID: 38631467 DOI: 10.1016/j.envres.2024.118927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Effective drug delivery for is the foremost requirement for the complete recovery of the disease. Nanomedicine and nanoengineering has provided so many spaces and ideas for the drug delivery design, whether controlled, targeted, or sustained. Different types of nanocarriers or nanoparticles are aggressively designed for the drug delivery applications. Clay minerals are identified as a one of the potential nanocarrier for the drug delivery. Owing to their biocompatibility and very low cytotoxicity, clay minerals showing effective therapeutic applications. In the present investigation, clay mineral, i.e., Halloysite nano tubes are utilized as a nanocarrier for the delivery of antibiotic cefixime (CFX), a third-generation cephalosporin. The HNT was first functionalized with the sulfuric acid and then further treated with the 3-(aminopropyl)triethoxysilane (APTES). The drug is loaded on three different classifications of HNTs, i.e., Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT and their comparative analysis is established. Different characterization techniques such as X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), Transmission electron microscopy TEM), Brunauer-Emmett-Teller (BET), adsorption studies, and Thermogravimetric analysis (TGA) were performed to evaluate their chemical, structural, morphological, and thermal properties. TGA confirmed the encapsulation efficiency of Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT as 42.65, 52.19, and 53.43%, respectively. Disk diffusion and MTT assay confirmed that the drug loaded HNTs have potential antibacterial activities and less cytotoxicity. The adsorption capacity of CFX with different HNTs are evaluated and Different adsorption and kinetic models have been discussed. Drug release studies shows that APTES-CFX-HNT showing sustained release of cefixime as compared to Bare-CFX-HNT and Acid-CFX-HNT.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Karthik Subramani
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center, Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Bańkosz M, Urbaniak MM, Szwed A, Rudnicka K, Włodarczyk M, Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B, Sobczak-Kupiec A. Physicochemical and biological analysis of composite biomaterials containing hydroxyapatite for biological applications. J Biomed Mater Res B Appl Biomater 2023; 111:2077-2088. [PMID: 37596849 DOI: 10.1002/jbm.b.35309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Bone tissue regeneration is one of the main areas of tissue engineering. A particularly important aspect is the development of new innovative composite materials intended for bone tissue engineering and/or bone substitution. In this article, the synthesis and characterization of ceramic-polymer composites based on polyvinylpyrrolidone, poly(vinyl alcohol) and hydroxyapatite (HAp) have been presented. The first part of the work deals with the synthesis and characterization of the ceramic phase. It was demonstrated that the obtained calcium phosphate is characterized by a heterogeneity and porosity indicating simultaneously its large specific surface area. Additionally, in the wound healing test, it was shown that the obtained powder supports the regeneration of L929 cells. Next, HAp-containing composite materials were obtained in the waste-free photopolymerization process and characterized in detail. It was proved that the obtained composites were characterized by sorption properties and stability during 12-day incubation in simulated physiological liquids. Importantly, the obtained composites showed no cytotoxic effect against the L929 murine fibroblasts - the cell viability was 94.5%. Then, confocal microscopy allowed to observe that murine fibroblasts effectively colonized the surface of the obtained polymer-ceramic composites, covering the entire surface of the biomaterial. Thus, the obtained results confirm the high potential of the obtained composites in the application of bone tissue regenerative medicine.
Collapse
Affiliation(s)
- Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Szwed
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| |
Collapse
|
3
|
Szałaj U, Chodara A, Gierlotka S, Wojnarowicz J, Łojkowski W. Enhanced Release of Calcium Ions from Hydroxyapatite Nanoparticles with an Increase in Their Specific Surface Area. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6397. [PMID: 37834536 PMCID: PMC10573918 DOI: 10.3390/ma16196397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Synthetic calcium phosphates, e.g., hydroxyapatite (HAP) and tricalcium phosphate (TCP), are the most commonly used bone-graft materials due to their high chemical similarity to the natural hydroxyapatite-the inorganic component of bones. Calcium in the form of a free ion or bound complexes plays a key role in many biological functions, including bone regeneration. This paper explores the possibility of increasing the Ca2+-ion release from HAP nanoparticles (NPs) by reducing their size. Hydroxyapatite nanoparticles were obtained through microwave hydrothermal synthesis. Particles with a specific surface area ranging from 51 m2/g to 240 m2/g and with sizes of 39, 29, 19, 11, 10, and 9 nm were used in the experiment. The structure of the nanomaterial was also studied by means of helium pycnometry, X-ray diffraction (XRD), and transmission-electron microscopy (TEM). The calcium-ion release into phosphate-buffered saline (PBS) was studied. The highest release of Ca2+ ions, i.e., 18 mg/L, was observed in HAP with a specific surface area 240 m2/g and an average nanoparticle size of 9 nm. A significant increase in Ca2+-ion release was also observed with specific surface areas of 183 m2/g and above, and with nanoparticle sizes of 11 nm and below. No substantial size dependence was observed for the larger particle sizes.
Collapse
Affiliation(s)
- Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland; (S.G.); (J.W.); (W.Ł.)
- Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | | | - Stanisław Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland; (S.G.); (J.W.); (W.Ł.)
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland; (S.G.); (J.W.); (W.Ł.)
| | - Witold Łojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland; (S.G.); (J.W.); (W.Ł.)
| |
Collapse
|
4
|
Ribeiro MEA, Checca Huaman NR, Gomez JGC, Rodríguez RJS. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and amino-functionalized nanodiamond bionanocomposites for bone tissue defect repair. Int J Biol Macromol 2023; 226:1041-1053. [PMID: 36435460 DOI: 10.1016/j.ijbiomac.2022.11.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Injection-molded nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with 6 % of 3-hydroxyvalerate (HV) and amino-nanodiamonds (nD-A) were produced and characterized to investigate the effect of functionalized nanodiamonds on mechanical and biological behavior to bone replacement application. To prepare mixtures of PHBHV and nD-A in different concentrations, nD-A was dispersed in chloroform by sonication with 40 % of amplitude. Three specimens were characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (DRX), differential scanning calorimetry (DSC), 3-point flexural tests, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). FTIR and TGA evidenced the existence of interactions between the nD-A and PHBHV. The crystallinity degree of PHBHV slightly reduced (~9 %) in nanocomposites and the morphology of the crystals changed. Nanocomposites achieved satisfactory dispersion and distribution of nD-A for low concentrations. Elastic modulus (E) increased from 1.96 ± 0.20 (PHBHV) to 2.59 ± 0.19 GPa (PHBHV/1.0%nD-A) (30 %). Despite the relatively limited dispersion, PHBHV/2.0 % nD-A had the best combination of E, strength, and maximum deformation. It had the highest glass transition temperature (43.1 vs 40.3 °C of PHBHV) and the best adhesion coefficient and reinforcement effectiveness. PHBHV-nD-A did not induce toxicity in 7 days and allowed cell fixation and expansion. These bionanocomposites should be considered for supplementary studies for bone tissue engineering.
Collapse
Affiliation(s)
- Maria Eduarda Araújo Ribeiro
- Advanced Materials Laboratory-LAMAV, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Parque Califórnia, 28015-620 Campos dos Goytacazes, RJ, Brazil.
| | - Noemi Raquel Checca Huaman
- Centro Brasileiro de Pesquisas Físicas-CBPF, R. Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ, Brazil
| | | | - Rubén J Sánchez Rodríguez
- Advanced Materials Laboratory-LAMAV, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Parque Califórnia, 28015-620 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
5
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
6
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
7
|
Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci 2022; 23:ijms23179721. [PMID: 36077119 PMCID: PMC9456225 DOI: 10.3390/ijms23179721] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone tissue is a nanocomposite consisting of an organic and inorganic matrix, in which the collagen component and the mineral phase are organized into complex and porous structures. Hydroxyapatite (HA) is the most used ceramic biomaterial since it mimics the mineral composition of the bone in vertebrates. However, this biomimetic material has poor mechanical properties, such as low tensile and compressive strength, which make it not suitable for bone tissue engineering (BTE). For this reason, HA is often used in combination with different polymers and crosslinkers in the form of composites to improve their mechanical properties and the overall performance of the implantable biomaterials developed for orthopedic applications. This review summarizes recent advances in HA-based biocomposites for bone regeneration, addressing the most widely employed inorganic matrices, the natural and synthetic polymers used as reinforcing components, and the crosslinkers added to improve the mechanical properties of the scaffolds. Besides presenting the main physical and chemical methods in tissue engineering applications, this survey shows that HA biocomposites are generally biocompatible, as per most in vitro and in vivo studies involving animal models and that the results of clinical studies on humans sometimes remain controversial. We believe this review will be helpful as introductory information for scientists studying HA materials in the biomedical field.
Collapse
Affiliation(s)
- Ileana Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (G.C.); (G.D.L.)
| | - Giovanna De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (G.C.); (G.D.L.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| |
Collapse
|