1
|
Wen X, Pei F, Jin Y, Zhao Z. Exploring the mechanical and biological interplay in the periodontal ligament. Int J Oral Sci 2025; 17:23. [PMID: 40169537 PMCID: PMC11962160 DOI: 10.1038/s41368-025-00354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/02/2025] [Accepted: 02/12/2025] [Indexed: 04/03/2025] Open
Abstract
The periodontal ligament (PDL) plays a crucial role in transmitting and dispersing occlusal force, acting as mechanoreceptor for muscle activity during chewing, as well as mediating orthodontic tooth movement. It transforms mechanical stimuli into biological signals, influencing alveolar bone remodeling. Recent research has delved deeper into the biological and mechanical aspects of PDL, emphasizing the importance of understanding its structure and mechanical properties comprehensively. This review focuses on the latest findings concerning both macro- and micro- structural aspects of the PDL, highlighting its mechanical characteristics and factors that influence them. Moreover, it explores the mechanotransduction mechanisms of PDL cells under mechanical forces. Structure-mechanics-mechanotransduction interplay in PDL has been integrated ultimately. By providing an up-to-date overview of our understanding on PDL at various scales, this study lays the foundation for further exploration into PDL-related biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Jin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
3
|
Wu B, Huang C, Li N, Lu Y, Yi Y, Yan B, Jiang D. Formulation of Hyperelastic Constitutive Model for Human Periodontal Ligament Based on Fiber Volume Fraction. MATERIALS (BASEL, SWITZERLAND) 2025; 18:705. [PMID: 39942371 PMCID: PMC11819989 DOI: 10.3390/ma18030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
Collagen fibers of the Periodontal ligament (PDL) play a crucial role in determining its mechanical properties. Based on this premise, we investigated the effect of the volume fraction of human PDL collagen fibers on the hyperelastic mechanical behavior under transient loading. Samples were obtained from different root regions (neck, middle, and apex) of the PDL, prepared from fresh human anterior teeth. The collagen fibers volume fraction in various regions of the PDL was quantified by staining techniques combined with image processing software. The collagen fiber volume fractions were found to be 60.3% in the neck region, 63.1% in the middle region, and 52.0% in the apex region. A new hyperelastic constitutive model was constructed based on the volume fraction. A uniaxial tensile test was conducted on these samples, and the accuracy of the constitutive model was validated by fitting the test data. Also, relevant model parameters were derived. The results demonstrated that human PDL exhibited hyperelastic mechanical properties on the condition of transient loading. With an increase in the volume fraction of collagen fibers, the tensile resistance of the PDL was enhanced, demonstrating more significant hyperelastic mechanical properties. The hyperelastic constitutive model showed a good fit with the experimental results (R2 > 0.997), describing the hyperelastic mechanical properties of the human PDL effectively.
Collapse
Affiliation(s)
- Bin Wu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (C.H.); (Y.L.); (Y.Y.)
| | - Chenfeng Huang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (C.H.); (Y.L.); (Y.Y.)
| | - Na Li
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (C.H.); (Y.L.); (Y.Y.)
| | - Yi Lu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (C.H.); (Y.L.); (Y.Y.)
| | - Yang Yi
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (C.H.); (Y.L.); (Y.Y.)
| | - Bin Yan
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Di Jiang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (C.H.); (Y.L.); (Y.Y.)
| |
Collapse
|
4
|
Taghizadeh H. Letter to editor - commentary on "Construction of hyperelastic model of human periodontal ligament based on collagen fibers distribution". J Mech Behav Biomed Mater 2024; 151:106346. [PMID: 38198929 DOI: 10.1016/j.jmbbm.2023.106346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Hadi Taghizadeh
- Tissue Mechanics Lab., Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran.
| |
Collapse
|
5
|
Wu B, Li N, Liu M, Cheng K, Jiang D, Yi Y, Ma S, Yan B, Lu Y. Construction of Human Periodontal Ligament Constitutive Model Based on Collagen Fiber Content. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6582. [PMID: 37834722 PMCID: PMC10573969 DOI: 10.3390/ma16196582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Periodontal ligament (PDL) is mainly composed of collagen fiber bundles, and the content of collagen fiber is an important factor affecting the mechanical properties of PDL. Based on this, the purpose of this study is to explore the effect of the PDL collagen fiber content on its viscoelastic mechanical behavior. Transverse and longitudinal samples of different regions of PDL were obtained from the human maxilla. The fiber content at different regions of human PDL was quantitatively measured using image processing software, and a new viscoelastic constitutive model was constructed based on the fiber content. The nano-indentation experiment was carried out with a loading rate of 0.5 mN·s-1, a peak load of 3 mN, and a holding time of 200 s, and the model parameters were obtained through the experiment data. The results showed that with the increase of fiber content, the deformation resistance of PDL also increased, and compared with the neck and middle region, the compressive strain in the apical region of PDL was the largest. The range of reduced elastic modulus of human PDL was calculated to be 0.39~5.08 MPa. The results of the experimental data and the viscoelastic constitutive model fit well, indicating that the model can well describe the viscoelastic behavior of human PDL.
Collapse
Affiliation(s)
- Bin Wu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (N.L.); (D.J.); (Y.Y.)
| | - Na Li
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (N.L.); (D.J.); (Y.Y.)
| | - Mao Liu
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China;
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Ke Cheng
- College of Mechanical Engineering, Southeast University, Nanjing 210018, China;
| | - Di Jiang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (N.L.); (D.J.); (Y.Y.)
| | - Yang Yi
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (N.L.); (D.J.); (Y.Y.)
| | - Songyun Ma
- Institute of General Mechanics, RWTH-Aachen University, 52062 Aachen, Germany;
| | - Bin Yan
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China;
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
- College of Mechanical Engineering, Southeast University, Nanjing 210018, China;
| | - Yi Lu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.W.); (N.L.); (D.J.); (Y.Y.)
| |
Collapse
|
6
|
Najafidoust M, Hashemi A, Oskui IZ. Effect of temperature on dynamic compressive behavior of periodontal ligament. Med Eng Phys 2023; 116:103986. [PMID: 37230701 DOI: 10.1016/j.medengphy.2023.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Periodontal ligament (PDL) attaches tooth root to the surrounding bone. Its existence between tooth and jaw bone is of utmost importance due to its significant role in absorbing and distributing physiological and para-physiological loading. According to the previous studies, various mechanical tests have been performed to characterize the mechanical properties of the PDL; however, all of them have been done at room temperature. To the best of our knowledge, this is the first study in which the testing was performed at body temperature. The present research was planned to measure the dependency of PDL's viscoelastic behavior on temperature and frequency. Three different temperatures, including body and room temperature, were opted to perform the dynamic compressive tests of the bovine PDL. In addition, a Generalized Maxwell model (GMM) was presented based on empirical outcomes. At 37 °C, amounts of loss factor were found to be greater than those in 25 °C, which demonstrates that the viscous phase of the PDL in higher temperatures plays a critical role. Likewise, by raising the temperature from 25 °C to 37 °C, the model parameters show an enlargement in the viscous part and lessening in the elastic part. It was concluded that the PDL's viscosity in body temperature is much higher than that in room temperature. This model would be functional for a more accurate computational analysis of the PDL at the body temperature (37 °C) in various loading conditions such as orthodontic simulations, mastication, and impact.
Collapse
Affiliation(s)
- Mohammad Najafidoust
- Biomedical Engineering Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Randwick, NSW, Australia
| | - Ata Hashemi
- Biomedical Engineering Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Iman Z Oskui
- Biomedical Engineering Group, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran.
| |
Collapse
|