1
|
Hassan H, Khan M, Shah LA, Yoo HM. CNC-mediated functionalized MWCNT-reinforced double-network conductive hydrogels as smart, flexible strain and epidermic sensors for human motion monitoring. J Mater Chem B 2025; 13:4796-4808. [PMID: 40146006 DOI: 10.1039/d4tb02709d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Soft, stretchable, and smart strain-sensing hydrogels have attracted significant attention due to their broad applicability in emerging fields. However, developing hydrogel-based strain-sensing materials with finely tuned mechanical and sensing properties remains challenging, primarily due to the inherent brittleness of traditionally fabricated hydrogels. In this study, a novel flexible strain- and epidermis-sensitive sensor was designed using a cellulose nanocrystal (CNC)-mediated acid functionalized multiwalled carbon nanotube (A-MWCNT)-reinforced double-network conductive hydrogel. This dual-network hydrogel system was fabricated by integrating a covalently crosslinked acrylamide (Amm) and [2-(acryloyloxy) ethyl] trimethyl-ammonium chloride (AETAC) with a physically crosslinked network of A-MWCNTs, which were uniformly dispersed via CNCs. Incorporating hydrogen bonding and strong electrostatic interactions within the physical network introduced reversible sacrificial bonds, significantly enhancing the hydrogel's mechanical strength. The hydrogel exhibited mechanical and sensing performance, including sufficient stretchability (431.6%), remarkable sensitivity, a gauge factor (GF) of 4.32 at 400% strain, toughness of 65.6 kJ m-3, Young's modulus of 1.5 kPa, and rapid response and recovery times of 100 msec. Furthermore, it demonstrated excellent cycling stability over 100 cycles and effective sensing capabilities across a broad strain range, from small deformations (5%) to large strains (400%). The conductivity of 0.09 S m-1, facilitated by the formation of conduction pathways through the AETAC and A-MWCNTs, further enhanced its performance. Moreover, the hydrogel exhibited practical applicability in detecting various large-scale and physiological human movements. Functioning as a wearable electronic skin, it represents a highly flexible and adaptable material suitable for applications in soft robotics, flexible sensors, and health monitoring devices.
Collapse
Affiliation(s)
- Hamna Hassan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Hyeong-Min Yoo
- School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Yao A, Zhong H, Mo Y, Zhang H, Shang J, Lan J, Fan W, Chen X, Lin S. Silver Nanoparticle-Decorated Cellulose Nanocrystal Reinforced Ionic Polymer Hydrogel With High Conductivity and Environmental Tolerance for Multifunctional Sensing and Emergency Alarm System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405826. [PMID: 39506427 DOI: 10.1002/smll.202405826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Indexed: 11/08/2024]
Abstract
Conductive hydrogels hold great promise for flexible electronics. However, the simultaneous achievement of satisfactory mechanical strength, outstanding environmental tolerance, high sensitivity, and multiple sensing applications in a single conductive hydrogel remains a significant challenge. Herein, ionic polymer-based hydrogels with a double conductive network consisting of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (DMC), 2-hydroxyethyl acrylate (HEA) and silver nanoparticle decorated cellulose nanocrystal (CNC@Ag) are prepared by a facile one-pot method. The resultant hydrogel (CDH) exhibits high stretchability, satisfactory self-adhesion, excellent environment tolerance (from -60 to 60 °C), long-term stability (60 days), effective UV-shielding, and strong antibacterial properties. Significantly, the CDH hydrogel displays high conductivity and rapid response due to its double conductive network of ionic polymer and CNC@Ag. Therefore, the CDH-assembled sensor can accurately detect signals from both strain and pressure deformations, exhibiting outstanding sensitivity and reliability for human motion detection, signal transmission, object recognition, and tactile sensing. More interestingly, collaborating with a development board, the CDH-based sensor can be developed as an emergency alarm to realize prompt alarms in dangerous situations. Overall, this work presents a strategy for the fabrication of conductive hydrogel with remarkable properties, making it possible for multifunctional sensing applications in wearable electronics.
Collapse
Affiliation(s)
- Yafang Wang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Anrong Yao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Hualan Zhong
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yunbo Mo
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Han Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiaojiao Shang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Jianwu Lan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Wuhou Fan
- High-tech Organic Fibers Key Laboratory of Sichuan Province, Sichuan Textile Scientific Research Institute Co., Ltd, Chengdu, 610083, P. R. China
| | - Xiaotian Chen
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shaojian Lin
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
3
|
Liang A, Liu W, Cui Y, Zhang P, Chen X, Zhai J, Dong W, Chen X. A pressure sensor made of laser-induced graphene@carbon ink in a waste sponge substrate using novel and simple fabricaing process for health monitoring. SENSING AND BIO-SENSING RESEARCH 2025; 47:100730. [DOI: 10.1016/j.sbsr.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
4
|
Shen J, Lu L, He R, Ye Q, Yuan C, Guo L, Zhao M, Cui B. Starch/ionic liquid/hydrophobic association hydrogel with high stretchability, fatigue resistance, self-recovery and conductivity for sensitive wireless wearable sensors. Carbohydr Polym 2024; 346:122608. [PMID: 39245492 DOI: 10.1016/j.carbpol.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Conductive hydrogels have been widely used in wearable electronics due to their flexible, conductive and adjustable properties. With ever-growing demand for sustainable and biocompatible sensing materials, biopolymer-based hydrogels have drawn significant attention. Among them, starch-based hydrogels have a great potential for wearable electronics. However, it remains challenging to develop multifunctional starch-based hydrogels with high stretchability, good conductivity, excellent durability and high sensitivity. Herein, amylopectin and ionic liquid were introduced into a hydrophobic association hydrogel to endow it with versatility. Benefiting from the synergistic effect of amylopectin and ionic liquid, the hydrogel exhibited excellent mechanical properties (the elongation of 2540 % with a Young's modulus of 12.0 kPa and a toughness of 1.3 MJ·m-3), self-recovery, good electrical properties (a conductivity of 1.8 S·m-1 and electrical self-healing), high sensitivity (gauge factor up to 26.85) and excellent durability (5850 cycles). The above properties of the hydrogel were closely correlated to its internal structure from hydrophobic association, H-bonding and electrostatic interaction, and can be regulated by changing the component contents. A wireless wearable sensor based on the hydrogel realized accurate and stable monitoring of joint motions and expression changes. This work demonstrates a kind of promising biopolymer-based materials as candidates for high-performance flexible wearable sensors.
Collapse
Affiliation(s)
- Jingmin Shen
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Rongtong He
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Qichao Ye
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
5
|
Yao R, Liu X, Yu H, Hou Z, Chang S, Yang L. Electronic skin based on natural biodegradable polymers for human motion monitoring. Int J Biol Macromol 2024; 278:134694. [PMID: 39142476 DOI: 10.1016/j.ijbiomac.2024.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The wearability of the flexible electronic skin (e-skin) allows it to attach to the skin for human motion monitoring, which is essential for studying human motion and especially for assessing how well patients are recovering from rehabilitation therapy. However, the use of non-degradable synthetic materials in e-skin may raise skin safety concerns. Natural biodegradable polymers with advantages such as biodegradability, biocompatibility, sustainability, natural abundance, and low cost have the potential to be alternative materials for constructing flexible e-skin and applying them to human motion monitoring. This review summarizes the applications of natural biodegradable polymers in e-skin for human motion monitoring over the past three years, focusing on the discussion of cellulose, chitosan, silk fibroin, gelatin, and sodium alginate. Finally, we summarize the opportunities and challenges of e-skin based on natural biodegradable polymers. It is hoped that this review will provide insights for the future development of flexible e-skin in the field of human motion monitoring.
Collapse
Affiliation(s)
- Ruiqin Yao
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China; School of Intelligent Medicine, China Medical University, Shenyang 110122, P.R. China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, P.R. China
| | - Honghao Yu
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
| | - Shijie Chang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, P.R. China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
| |
Collapse
|
6
|
Khan M, Rahman TU, Shah LA, Akil HM, Fu J, Yoo HM. Multi-role conductive hydrogels for flexible transducers regulated by MOFs for monitoring human activities and electronic skin functions. J Mater Chem B 2024; 12:6190-6202. [PMID: 38832839 DOI: 10.1039/d4tb00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Metal organic frameworks (MOFs) have garnered significant attention in the development of stretchable and wearable conductive hydrogels for flexible transducers. However, MOFs used in hydrogel networks have been hampered by low mechanical performance and poor dispersibility in aqueous solutions, which affect the performance of hydrogels, including low toughness, limited self-recovery, short working ranges, low conductivity, and prolonged response-recovery times. To address these shortcomings, a novel approach was adopted in which micelle co-polymerization was used for the ex situ synthesis of Zn-MOF-based hydrogels with exceptional stretchability, robust toughness, anti-fatigue properties, and commendable conductivity. This breakthrough involved the ex situ integration of Zn-MOFs into hydrophobically cross-linked polymer chains. Here the micelles of EHDDAB had two functions, first they uniformly dispersed the Zn-MOFs and secondly they dynamically cross-linked the polymer chains, profoundly influencing the mechanical characteristics of the hydrogels. The non-covalent synergistic interactions introduced by Zn-MOFs endowed the hydrogels with the capacity for high stretchability, high stress, rapid self-recovery, anti-fatigue properties, and conductivity, all achieved without external stimuli. Furthermore, hydrogels based on Zn-MOFs can serve as durable and highly sensitive flexible transducers, adept at detecting diverse mechanical deformations with swift response-recovery times and high gauge factor values. Consequently, these hydrogels can be tailored to function as wearable strain sensors capable of sensing significant human joint movements, such as wrist bending, and motions involving the wrist, fingers, and elbows. Similarly, they excel at monitoring subtle human motions, such as speech pronunciation, distinguishing between different words, as well as detecting swallowing and larynx vibrations during various activities. Beyond these applications, the hydrogels exhibit proficiency in distinguishing and reproducing various written words with reliability. The Zn-MOF-based hydrogels hold promising potential for development in electronic skin, medical monitoring, soft robotics, and flexible touch panels.
Collapse
Affiliation(s)
- Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Tanzil Ur Rahman
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Hazizan Md Akil
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang, Malaysia
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen Uniersity, Guangzhou 510275, China
| | - Hyeong-Min Yoo
- School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, Republic of Korea.
| |
Collapse
|
7
|
Zhou Y, Wang X, Lin X, Wang Z, Huang Z, Guo L, Xie H, Xu X, Dong F. Strong and tough poly(vinyl alcohol)/xanthan gum-based ionic conducting hydrogel enabled through the synergistic effect of ion cross-linking and salting out. Int J Biol Macromol 2024; 263:130511. [PMID: 38423443 DOI: 10.1016/j.ijbiomac.2024.130511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The mechanical properties of ionic conductive hydrogels (ICHs) are generally inadequate, leading to their susceptibility to breakage under external forces and consequently resulting in the failure of flexible electronic devices. In this work, a simple and convenient strategy was proposed based on the synergistic effect of ion cross-linking and salting out, in which the hydrogels consisting of polyvinyl alcohol (PVA) and xanthan gum (XG) were immersed in zinc sulfate (ZnSO4) solution to obtain ICHs with exceptional mechanical properties. The salt-out effects between PVA chains and SO42- ions along with the cross-linked network of XG chains and Zn2+ ions contribute to the desirable mechanical properties of ICHs. Notably, the mechanical properties of ICHs can be adjusted by changing the concentration of ZnSO4 solution. Consequently, the optimum fracture stress and the fracture energy can reach 3.38 MPa and 12.13 KJ m-2, respectively. Moreover, the ICHs demonstrated a favorable sensitivity (up to 2.05) when utilized as a strain sensor, exhibiting an accurate detection of human body movements across various amplitudes.
Collapse
Affiliation(s)
- Yiyang Zhou
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China
| | - Xiangyu Lin
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Zhuomin Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Zhen Huang
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, Jiangsu Province, China
| | - Lizhen Guo
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Hui Xie
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China.
| | - Xu Xu
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, Jiangsu Province, China.
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
8
|
Wang J, Sawut A, Simayi R, Song H, Jiao X. Preparation of high strength, self-healing conductive hydrogel based on polysaccharide and its application in sensor. J Mech Behav Biomed Mater 2024; 150:106246. [PMID: 38006795 DOI: 10.1016/j.jmbbm.2023.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
The development of cost-effective, eco-friendly conductive hydrogels with excellent mechanical properties, self-healing capabilities, and non-toxicity holds immense significance in the realm of biosensors. The biosensors demonstrate promising applications in the fields of biomedical engineering and human motion detection. A unique double-network hydrogel was prepared through physical-chemical crosslinking using chitosan (CS), polyacrylic acid (AA), and sodium alginate (SA) as raw materials. The prepared double-network hydrogels exhibited exceptional mechanical properties, as well as self-healing and conductive capabilities. Polyacrylic acid as the first layer network, while chitosan and sodium alginate were incorporated to establish the second layer network through electrostatic interactions, thereby imparting self-healing and self-recovery properties. The hydrogel was subsequently immersed in the salt solution to induce network winding. The mechanical robustness of the hydrogel was significantly enhanced through synergistic coordination of covalent and non-covalent interactions. When the concentration of sodium alginate was 20 g/L, the double-network hydrogel exhibits enhanced mechanical properties, with a tensile fracture stress of up to 1.31 MPa and a strength of 4.17 MPa under 80% compressive deformation. Furthermore, the recovery rate of this double-network hydrogel reached an impressive 89.63% within a span of 30 min. After 24 h without any external forces, the self-healing rate reached 26.11%, demonstrating remarkable capabilities in terms of self-recovery and self-healing. Furthermore, this hydrogel exhibited consistent conductivity properties and was capable of detecting human finger movements. Hence, this study presents a novel approach for designing and synthesizing environmentally friendly conductive hydrogels for biosensors.
Collapse
Affiliation(s)
- Junxiao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Amatjan Sawut
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Rena Simayi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Huijun Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Xueying Jiao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| |
Collapse
|
9
|
Zhao R, Zhao Z, Song S, Wang Y. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59854-59865. [PMID: 38095585 DOI: 10.1021/acsami.3c15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
As typical soft materials, hydrogels have demonstrated great potential for the fabrication of flexible sensors due to their highly compatible elastic modulus with human skin, prominent flexibility, and biocompatible three-dimensional network structure. However, the practical application of wearable hydrogel sensors is significantly constrained because of weak adhesion, limited stretchability, and poor self-healing properties of traditional hydrogels. Herein, a multifunctional sodium hyaluronate (SH)/borax (B)/gelatin (G) double-cross-linked conductive hydrogel (SBG) was designed and constructed through a simple one-pot blending strategy with SH and gelatin as the gel matrix and borax as the dynamic cross-linker. The obtained SBG hydrogels exhibited a moderate tensile strength of 25.3 kPa at a large elongation of 760%, high interfacial toughness (106.5 kJ m-3), strong adhesion (28 kPa to paper), and satisfactory conductivity (224.5 mS/m). In particular, the dynamic cross-linking between SH, gelatin, and borax via borate ester bonds and hydrogen bonds between SH and gelatin chain endowed the SBG hydrogels with good fatigue resistance (>300 cycles), rapid self-healing performance (HE (healing efficiency) ∼97.03%), and excellent repeatable adhesion. The flexible wearable sensor assembled with SBG hydrogels demonstrated desirable strain sensing performance with a competitive gauge factor and exceptional stability, which enabled it to detect and distinguish various multiscale human motions and physiological signals. Furthermore, the flexible sensor is capable of precisely perceiving temperature variation with a high thermal sensitivity (1.685% °C-1). As a result, the wearable sensor displayed dual sensory performance for temperature and strain deformation. It is envisioned that the integration of strain sensors and thermal sensors provide a novel and convenient strategy for the next generation of multisensory wearable electronics and lay a solid foundation for their application in electronic skin and soft actuators.
Collapse
Affiliation(s)
- Rongrong Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| |
Collapse
|
10
|
Wang C, Yang B, Xiang R, Ji J, Wu Y, Tan S. High-Saline-Enabled Hydrophobic Homogeneous Cross-Linking for Extremely Soft, Tough, and Stretchable Conductive Hydrogels as High-Sensitive Strain Sensors. ACS NANO 2023; 17:23194-23206. [PMID: 37926964 DOI: 10.1021/acsnano.3c09884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Design of admirable conductive hydrogels combining robust toughness, soft flexibility, desirable conductivity, and freezing resistance remains daunting challenges for meeting the customized and critical demands of flexible and wearable electronics. Herein, a promising and facile strategy to prepare hydrogels tailored to these anticipated demands is proposed, which is prepared in one step by homogeneous cross-linking of acrylamide using hydrophobic divinylbenzene stabilized by micelles under saturated high-saline solutions. The influence of high-saline environments on the hydrogel topology and mechanical performance is investigated. The high-saline environments suppress the size of hydrophobic cross-linkers in micelles during hydrogel polymerization, which weaken the dynamic hydrophobic associations to soften the hydrogels. Nevertheless, the homogeneous cross-linked networks ensure antifracture during ultralarge deformations. The obtained hydrogels show special mechanical performance combining extremely soft deformability and antifracture features (Young's modulus, 5 kPa; stretchability, 10200%; toughness, 134 kJ m-2; and excellent anticrack propagation). The saturated-saline environments also endow the hydrogels with desirable ion conductivity (106 mS cm-1) and freezing resistance (<20 °C). These comprehensive properties of the obtained hydrogels are quite suitable for flexible electronic applications, which is demonstrated by the high sensitivity and durability of the derived strain sensors.
Collapse
Affiliation(s)
- Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Baibin Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Ruihan Xiang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| |
Collapse
|
11
|
Xiao Y, Lu C, Yu Z, Lian Y, Ma Y, Chen Z, Jiang X, Zhang Y. Transparent, High Stretchable, Environmental Tolerance, and Excellent Sensitivity Hydrogel for Flexible Sensors and Capacitive Pens. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44280-44293. [PMID: 37698302 DOI: 10.1021/acsami.3c08949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The prospect of ionic conductive hydrogels in multifunctional sensors has generated widespread scientific interest. The new generation of flexible materials should be combined with superior mechanical properties, high conductivity, transparency, sensitivity, good self-restoring fatigue properties, and other multifunctional characteristics, while the current materials are difficult to meet these requirements. Herein, we prepared poly(acrylamide-acrylic acid) (P(AM-AA))/gelatin/glycerol-Al3+ (PG1G2A) ionic conducting hydrogel by one-pot polymerization under UV light. The prepared PG1G2A ionic conductive hydrogel had high tensile strength (539.18 kPa), excellent tensile property (1412.96%), good fast self-recovery and fatigue resistance, high transparency (>80%), excellent moisturizing, and antifreezing/drying properties. In addition, the ionic conductive hydrogel-based strain sensor can respond to mechanical stimulation and generate accurate, stable, and recyclable electrical signals, with excellent sensitivity (GF 5.81). In addition, the PG1G2A hydrogel could be used as flexible wearable devices for monitoring multiple strain and subtle movements of different body parts at different temperatures. Interestingly, the PG1G2A hydrogel capacitive pen embedded in the mold can be used to write and draw on the screen of a phone or tablet. This new multifunctional ionic conducting hydrogel shows broad application prospects in E-skin, motion monitoring, and human-computer interaction in extreme environments.
Collapse
Affiliation(s)
- Yanwen Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chengcheng Lu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhenkun Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yue Lian
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yulin Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoxia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xueliang Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
12
|
Ullah R, Shah LA, Khan M, Ara L. Guar gum reinforced conductive hydrogel for strain sensing and electronic devices. Int J Biol Macromol 2023; 246:125666. [PMID: 37406904 DOI: 10.1016/j.ijbiomac.2023.125666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Hydrophobically associated conductive hydrogels got great attention due to their excellent properties like stretchability, energy dissipation mechanism, and strain sensor. But hydrophobically associated hydrogels have poor mechanical properties and time response to external stimuli. To enhance the mechanical properties and response to stimuli, Acrylamide- co-Butyl acrylate/Gum based conductive hydrogels were prepared. SDS works as a cross-linker and micelle-forming agent while NaCl makes hydrogel as conductive. The results show that our % strain sensing reached up to 400 %, and fracture stress and fracture strain reached to 0.5 MPa and 401 % respectively. Besides this, it's having an excellent response to continuous stretching and unstretching multiple cycles without any fracture up to 180 s and an excellent time response of 190 s. The conductivity of the hydrogel was 0.20 Sm-1. The hydrophobic hydrogels showed a clear and quick response to human motions like finger, wresting, writing, speaking, etc. Interestingly, our prepared hydrogels can detect the mood of the human face. Similarly, the hydrogels were found efficient in bridging the surface of electronic devices with human skin. This indicates that our prepared hydrogels can monitor human body motion and will replace the existing materials used in strain sensors in the near future.
Collapse
Affiliation(s)
- Rafi Ullah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Latafat Ara
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|