1
|
Harhash MM, Zahra AA, Abdelaleem OO, Fouad NA, El Sayed HS. Serum levels of miR-34, miR-182 and miR-378 as novel diagnostic biomarkers in Behçet patients and their relation to disease activity and severity. Arch Physiol Biochem 2025:1-10. [PMID: 40277169 DOI: 10.1080/13813455.2025.2497266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Behçet Disease (BD) is a chronic multi-systemic vasculitis of relapsing and remitting nature. Many recent studies have denoted the role of micro RNAs (MiRNAs) in the pathogenesis of BD. SUBJECTS AND METHODS Blood samples were withdrawn from 50 BD patients and 40 age and sex-matched healthy individuals in this study. RESULTS Serum expression levels of miR-34a and miR-182 were significantly elevated in BD patients when compared to controls, p < .001. However, serum expression levels of miR-378 were significantly decreased in BD patients compared to controls, p < .001. miR-182 serum levels were also found to be elevated in active BD patients compared to patients in inactive state (p = .022). We found a significant association between miR-34 levels and joint affection in BD patients as well as a significant relation between miR-182 levels and each of neurological manifestations and genital ulcerations. In addition, a statistically significant positive correlations were proved in the current results between miR-182 expression and BDCAF score (r = 0.419, p = .002) as well as severity score (r = 0.358, p = .011). CONCLUSION Our study denoted that the three miRNAs; miR-34a, miR-182, and miR-378 possibly play a crucial role in the pathogenesis of BD. The distinction of their serum levels between patients and healthy individuals suggested their potentiality as promising biomarkers for BD.
Collapse
Affiliation(s)
- Miran M Harhash
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | - Amr A Zahra
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | - Omayma O Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | - Nermeen A Fouad
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | - Hassan S El Sayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| |
Collapse
|
2
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
3
|
Talevi V, Melas K, Pehlivan G, Imtiaz MA, Krüger DM, Centeno TP, Aziz NA, Fischer A, Breteler MMB. Peripheral whole blood microRNA expression in relation to vascular function: a population-based study. J Transl Med 2024; 22:670. [PMID: 39030538 PMCID: PMC11264787 DOI: 10.1186/s12967-024-05407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/15/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND As key regulators of gene expression, microRNAs affect many cardiovascular mechanisms and have been associated with several cardiovascular diseases. In this study, we aimed to investigate the relation of whole blood microRNAs with several quantitative measurements of vascular function, and explore their biological role through an integrative microRNA-gene expression analysis. METHODS Peripheral whole blood microRNA expression was assessed through RNA-Seq in 2606 participants (45.8% men, mean age: 53.93, age range: 30 to 95 years) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Weighted gene co-expression network analysis was used to cluster microRNAs with highly correlated expression levels into 14 modules. Through linear regression models, we investigated the association between each module's expression and quantitative markers of vascular health, including pulse wave velocity, total arterial compliance index, cardiac index, stroke index, systemic vascular resistance index, reactive skin hyperemia and white matter hyperintensity burden. For each module associated with at least one trait, one or more hub-microRNAs driving the association were defined. Hub-microRNAs were further characterized through mapping to putative target genes followed by gene ontology pathway analysis. RESULTS Four modules, represented by hub-microRNAs miR-320 family, miR-378 family, miR-3605-3p, miR-6747-3p, miR-6786-3p, and miR-330-5p, were associated with total arterial compliance index. Importantly, the miR-320 family module was also associated with white matter hyperintensity burden, an effect partially mediated through arterial compliance. Furthermore, hub-microRNA miR-192-5p was related to cardiac index. Functional analysis corroborated the relevance of the identified microRNAs for vascular function by revealing, among others, enrichment for pathways involved in blood vessel morphogenesis and development, angiogenesis, telomere organization and maintenance, and insulin secretion. CONCLUSIONS We identified several microRNAs robustly associated with cardiovascular function, especially arterial compliance and cardiac output. Moreover, our results highlight miR-320 as a regulator of cerebrovascular damage, partly through modulation of vascular function. As many of these microRNAs were involved in biological processes related to vasculature development and aging, our results contribute to the understanding of vascular physiology and provide putative targets for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Valentina Talevi
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Konstantinos Melas
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Mohammed A Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Dennis Manfred Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Tonatiuh Pena Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany.
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
5
|
Bu S, Singh A, Nguyen HC, Peddi B, Bhatt K, Ravendranathan N, Frisbee JC, Singh KK. Protein Disulfide Isomerase 4 Is an Essential Regulator of Endothelial Function and Survival. Int J Mol Sci 2024; 25:3913. [PMID: 38612722 PMCID: PMC11011381 DOI: 10.3390/ijms25073913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Endothelial autophagy plays an important role in the regulation of endothelial function. The inhibition of endothelial autophagy is associated with the reduced expression of protein disulfide isomerase 4 (PDIA-4); however, its role in endothelial cells is not known. Here, we report that endothelial cell-specific loss of PDIA-4 leads to impaired autophagic flux accompanied by loss of endothelial function and apoptosis. Endothelial cell-specific loss of PDIA-4 also induced marked changes in endothelial cell architecture, accompanied by the loss of endothelial markers and the gain of mesenchymal markers consistent with endothelial-to-mesenchymal transition (EndMT). The loss of PDIA-4 activated TGFβ-signaling, and inhibition of TGFβ-signaling suppressed EndMT in PDIA-4-silenced endothelial cells in vitro. Our findings help elucidate the role of PDIA-4 in endothelial autophagy and endothelial function and provide a potential target to modulate endothelial function and/or limit autophagy and EndMT in (patho-)physiological conditions.
Collapse
Affiliation(s)
- Shuhan Bu
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bharatsinai Peddi
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Kriti Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|