1
|
Sharma A, Dey P. Novel insights into the structural changes induced by disease-associated mutations in TDP-43: a computational approach. J Biomol Struct Dyn 2022:1-11. [PMID: 35751132 DOI: 10.1080/07391102.2022.2092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Over the last two decades, the pathogenic aggregation of TAR DNA-binding protein 43 (TDP-43) is found to be strongly associated with several fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTD), etc. While the mutations and truncation in TDP-43 protein have been suggested to be responsible for TDP-43 pathogenesis by accelerating the aggregation process, the effects of these mutations on the bio-mechanism of pathological TDP-43 protein remained poorly understood. Investigating this at the molecular level, we formulized an integrated workflow of molecular dynamic simulation and machine learning models (MD-ML). By performing an extensive structural analysis of three disease-related mutations (i.e., I168A, D169G, and I168A-D169G) in the conserved RNA recognition motifs (RRM1) of TDP-43, we observed that the I168A-D169G double mutant delineates the highest packing of the protein inner core as compared to the other mutations, which may indicate more stability and higher chances of pathogenesis. Moreover, through our MD-ML workflow, we identified the biological descriptors of TDP-43 which includes the interacting residue pairs and individual protein residues that influence the stability of the protein and could be experimentally evaluated to develop potential therapeutic strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhibhav Sharma
- School of Computer and System Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pinki Dey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Baltrukevich H, Podlewska S. From Data to Knowledge: Systematic Review of Tools for Automatic Analysis of Molecular Dynamics Output. Front Pharmacol 2022; 13:844293. [PMID: 35359865 PMCID: PMC8960308 DOI: 10.3389/fphar.2022.844293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
An increasing number of crystal structures available on one side, and the boost of computational power available for computer-aided drug design tasks on the other, have caused that the structure-based drug design tools are intensively used in the drug development pipelines. Docking and molecular dynamics simulations, key representatives of the structure-based approaches, provide detailed information about the potential interaction of a ligand with a target receptor. However, at the same time, they require a three-dimensional structure of a protein and a relatively high amount of computational resources. Nowadays, as both docking and molecular dynamics are much more extensively used, the amount of data output from these procedures is also growing. Therefore, there are also more and more approaches that facilitate the analysis and interpretation of the results of structure-based tools. In this review, we will comprehensively summarize approaches for handling molecular dynamics simulations output. It will cover both statistical and machine-learning-based tools, as well as various forms of depiction of molecular dynamics output.
Collapse
Affiliation(s)
- Hanna Baltrukevich
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
- Faculty of Pharmacy, Chair of Technology and Biotechnology of Medical Remedies, Jagiellonian University Medical College in Krakow, Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
3
|
Balasubramanian S, Rajagopalan M, Bojja RS, Skalka AM, Andrake MD, Ramaswamy A. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study. J Biomol Struct Dyn 2016; 35:3469-3485. [PMID: 27835934 DOI: 10.1080/07391102.2016.1257955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retroviral integrases are reported to form alternate dimer assemblies like the core-core dimer and reaching dimer. The core-core dimer is stabilized predominantly by an extensive interface between two catalytic core domains. The reaching dimer is stabilized by N-terminal domains that reach to form intermolecular interfaces with the other subunit's core and C-terminal domains (CTD), as well as CTD-CTD interactions. In this study, molecular dynamics (MD), Brownian dynamics (BD) simulations, and free energy analyses, were performed to elucidate determinants for the stability of the reaching dimer forms of full-length Avian Sarcoma Virus (ASV) and Human Immunodeficiency Virus (HIV) IN, and to examine the role of the C-tails (the last ~16-18 residues at the C-termini) in their structural dynamics. The dynamics of an HIV reaching dimer derived from small angle X-ray scattering and protein crosslinking data, was compared with the dynamics of a core-core dimer model derived from combining the crystal structures of two-domain fragments. The results showed that the core domains in the ASV reaching dimer express free dynamics, whereas those in the HIV reaching dimer are highly stable. BD simulations suggest a higher rate of association for the HIV core-core dimer than the reaching dimer. The predicted stability of these dimers was therefore ranked in the following order: ASV reaching dimer < HIV reaching dimer < composite core-core dimer. Analyses of MD trajectories have suggested residues that are critical for intermolecular contacts in each reaching dimer. Tests of these predictions and insights gained from these analyses could reveal a potential pathway for the association and dissociation of full-length IN multimers.
Collapse
Affiliation(s)
- Sangeetha Balasubramanian
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| | - Muthukumaran Rajagopalan
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| | - Ravi Shankar Bojja
- b Institute for Cancer Research , Fox Chase Cancer Center , Philadelphia , PA 19111 , USA
| | - Anna Marie Skalka
- b Institute for Cancer Research , Fox Chase Cancer Center , Philadelphia , PA 19111 , USA
| | - Mark D Andrake
- b Institute for Cancer Research , Fox Chase Cancer Center , Philadelphia , PA 19111 , USA
| | - Amutha Ramaswamy
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| |
Collapse
|
4
|
Ruffoni A, Ferri N, Bernini SK, Ricci C, Corsini A, Maffucci I, Clerici F, Contini A. 2-Amino-3-(phenylsulfanyl)norbornane-2-carboxylate: An Appealing Scaffold for the Design of Rac1–Tiam1 Protein–Protein Interaction Inhibitors. J Med Chem 2014; 57:2953-62. [DOI: 10.1021/jm401924s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alessandro Ruffoni
- Dipartimento
di Scienze Farmaceutiche—Sezione di Chimica Generale e Organica
“Alessandro Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Nicola Ferri
- Dipartimento
di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
- Multimedica IRCCS, Milan, Italy
| | - Sergio K. Bernini
- Dipartimento
di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Chiara Ricci
- Dipartimento
di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Alberto Corsini
- Dipartimento
di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Irene Maffucci
- Dipartimento
di Scienze Farmaceutiche—Sezione di Chimica Generale e Organica
“Alessandro Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Francesca Clerici
- Dipartimento
di Scienze Farmaceutiche—Sezione di Chimica Generale e Organica
“Alessandro Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento
di Scienze Farmaceutiche—Sezione di Chimica Generale e Organica
“Alessandro Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
5
|
Lakkaraju SK, Xue F, Faden AI, MacKerell AD. Estimation of ligand efficacies of metabotropic glutamate receptors from conformational forces obtained from molecular dynamics simulations. J Chem Inf Model 2013; 53:1337-49. [PMID: 23688150 DOI: 10.1021/ci400160x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group 1 metabotropic glutamate receptors (mGluR) are G-protein coupled receptors with a large bilobate extracellular ligand binding region (LBR) that resembles a Venus fly trap. Closing of this LBR in the presence of a ligand is associated with the activation of the receptor. From conformational sampling of the LBR-ligand complexes using all-atom molecular dynamics (MD) simulations, we characterized the conformational minima related to the hinge like motion associated with the LBR closing/opening in the presence of known agonists and antagonists. By applying a harmonic restraint on the LBR, we also determined the conformational forces generated by the different ligands. The change in the location of the minima and the conformational forces were used to quantify the efficacies of the ligands. This analysis shows that efficacies can be estimated from the forces of a single conformation of the receptor, indicating the potential of MD simulations as an efficient and useful technique to quantify efficacies, thereby facilitating the rational design of mGluR agonists and antagonists.
Collapse
Affiliation(s)
- Sirish Kaushik Lakkaraju
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn St, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
6
|
Maffucci I, Contini A. Explicit Ligand Hydration Shells Improve the Correlation between MM-PB/GBSA Binding Energies and Experimental Activities. J Chem Theory Comput 2013; 9:2706-17. [PMID: 26583864 DOI: 10.1021/ct400045d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics Generalized Born Surface Area (MM-GBSA) methods are widely used for drug design/discovery purposes. However, it is not clear if the correlation between predicted and experimental binding affinities can be improved by explicitly considering selected water molecules in the calculation of binding energies, since different and sometimes diverging opinions are found in the literature. In this work, we evaluated how variably populated hydration shells explicitly considered around the ligands may affect the correlation between MM-PB/GBSA computed binding energy and biological activities (IC50 and ΔGbind, depending on the available experimental data). Four different systems-namely, the DNA-topoisomerase complex, α-thrombin, penicillopepsin, and avidin-were considered and ligand hydration shells populated by 10-70 water molecules were systematically evaluated. We found that the consideration of a hydration shell populated by a number of water residues (Nwat) between 30 and 70 provided, in all of the considered examples, a positive effect on correlation between MM-PB/GBSA calculated binding affinities and experimental activities, with a negligible increment of computational cost.
Collapse
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche-Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano , Via Venezian, 21 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche-Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano , Via Venezian, 21 20133 Milano, Italy
| |
Collapse
|