1
|
He M, Yin Y, Yu G, Zhou H. Phytoestrogens: Pharmacological Potential and Therapeutic Insights for Urinary Tract Infections. Phytother Res 2025; 39:1261-1276. [PMID: 39739399 DOI: 10.1002/ptr.8429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
Urinary tract infections (UTIs) are exceptionally common in postmenopausal female or patients with diabetes mellitus or nephrolithiasis, carrying substantial burden on patients and healthcare system. Increasing proportion and ongoing spread of antibiotic-resistant pathogens have further debilitated the condition in battlefield against the UTIs. Lack of estrogen may contribute to high inclination of UTIs after menopause and hormone replacement therapy can mitigate symptoms of hot flashes, vaginal dryness and UTIs, rationalizing the usage of estrogen and analogues in treatment and prophylaxis of UTIs. Phytoestrogens which comprise flavonoids, coumerins, stilbenes, and lignans, are natural botanical compounds with estrogen structural similarity and biochemical features. Phytoestrogens have emerged as adjuvant remedy and prophylaxis for uropathogenic bacteria even for multidrug-resistant ones, with the multifaceted mechanisms such as inhibition of adhesion and invading ability of bacteria, destruction of biofilms, synergistically enhancement of antibiotics activity. It is plausible to propose phytoestrogens as potential agents or combination with other strategies to ameliorate the challenge of multi-drug resistance in UTIs.
Collapse
Affiliation(s)
- Mengzhen He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Yin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Mishra A, Maurya SK, Singh A, Siddique H, Samanta SK, Mishra N. Neolamarckia cadamba (Roxb.) Bosser (Rubiaceae) extracts: promising prospects for anticancer and antibacterial potential through in vitro and in silico studies. Med Oncol 2023; 40:99. [PMID: 36808013 DOI: 10.1007/s12032-023-01971-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Neolamarckia cadamba is an Indian traditional medicinal plant having various therapeutic potentials. In the present study, we did solvent-based extraction of Neolamarckia cadamba leaves. The extracted samples were screened against liver cancer cell line (HepG2) and bacteria (Escherichia coli). MTT cytotoxic assay was performed for in vitro analysis of extracted samples against the HepG2 cell lines and the normal human prostate PNT2 cell line. Chloroform extract of Neolamarckia cadamba leaves showed better activity with IC50 value 69 μg/ml. DH5α strain of Escherichia coli (E. coli) was cultured in Luria Bertani (LB) broth media and minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) were calculated. Solvent extract chloroform showed better activity in MTT analysis and antibacterial screening and it was taken for characterization of phytocomposition by Fourier transform infrared (FTIR) and gas chromatography mass spectrometry (GC-MS). The identified phytoconstituents were docked with potential targets of liver cancer and E. coli. The phytochemical 1-(5-Hydroxy-6-hydroxymethyl-tetrahydropyran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione shows highest docking score against the targets PDGFRA (PDB ID: 6JOL) and Beta-ketoacyl synthase 1(PDB ID: 1FJ4) and their stability was further confirmed by molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Anamika Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Santosh Kumar Maurya
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Hifzur Siddique
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India.
| |
Collapse
|
3
|
Khan S, Nasrullah, Hussain A, Asif M, Sattar FA, Audhal FA, Qadir MI, Hamdard MH. In-silico studies of inhibitory compounds against protease enzymes of SARS-CoV-2. Medicine (Baltimore) 2023; 102:e31318. [PMID: 36820539 PMCID: PMC9907915 DOI: 10.1097/md.0000000000031318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
In December 2019, a COVID-19 outbreak caused by SARS-CoV-2 raised worldwide health concerns. In this case, molecular docking and drug repurposing computational approaches were engaged to check the efficiency of plant-based inhibitory compounds against SARS-CoV-2 main protease enzyme and papain-like protease enzyme. Twenty phytochemical inhibitory compounds were collected. Then these compounds were screened based on Lipinski's rule. As a result of this screening eleven compounds were further selected. Quantitative structure-activity relationships analysis was done before molecular docking to check especially the antiviral activity of inhibitory compounds. Docking validation of these compounds was checked by using online server Database of Useful Decoys: Enhanced. Binding affinity value, and pharmacokinetic properties of Aloin compound indicated that it can be used against main protease enzyme of SARS-CoV-2. So, it makes it a promising compound to follow further in cell and biochemical-based assays to explore its potential use against COVID-19.
Collapse
Affiliation(s)
- Saba Khan
- Institute of Molecular Biology & Biotechnology Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Nasrullah
- Department of Molecular Biology and Biotechnology, CASVAB, Quetta, Pakistan
| | - Abrar Hussain
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | | | | | | | - Muhammad Imran Qadir
- Institute of Molecular Biology & Biotechnology Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Muhammad Hamid Hamdard
- Faculty of Biology, Kabul University, Kabul, Afghanistan
- * Correspondence: Muahmmad Hamid Hamdard, Faculty of Biology, Kabul University, Kabul, Afghanistan (e-mail: )
| |
Collapse
|
4
|
Ma S, Jia R, Li X, Wang W, Jin L, Zhang X, Yu H, Yang J, Dong L, Zhang L, Dong J. Herbicidal Active Compound Ferulic Acid Ethyl Ester Affects Fatty Acid Synthesis by Targeting the 3-Ketoacyl-Acyl Carrier Protein Synthase I (KAS I). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:276-287. [PMID: 36588523 DOI: 10.1021/acs.jafc.2c07214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring new herbicide targets based on natural product derivatives is an important research aspect for the generation of innovative pesticides. Ferulic acid ethyl ester (FAEE), a natural product derivative from ferulic acid, has significant herbicidal activity mainly by inhibiting the normal growth of weed seedling roots. However, the FAEE target protein underlying its herbicidal activity has not been identified. In this study, we synthesized an FAEE probe to locate its site of action. We discovered that FAEE entry point was via the root tips. Fourteen major binding proteins were identified using Drug affinity responsive target stability (DARTS) combined with LC-MS/MS, which included 3-ketoacyl-acyl carrier protein synthase I (KAS I) and phenylalanine ammonia-lyase I (PAL I). The KAS I and PAL I proteins/genes expression was changed significantly after exposure to FAEE, as evidenced by combined transcriptomic and proteomic analysis. A molecular docking assay indicated that KAS I and FAEE had a strong binding ability. Combined with previous studies on FAEE mechanism of action, and based on our results, we conclude that FAEE targeting KAS I lead to the blockage of the fatty acid synthesis pathway and result in plant death.
Collapse
Affiliation(s)
- Shujie Ma
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ran Jia
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xin Li
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Wen Wang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Liyu Jin
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Hualong Yu
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Juan Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066000, China
| | - Lili Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jingao Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
5
|
Mirjafary Z, Mohammad Karbasi M, Hesamzadeh P, Shaker HR, Amiri A, Saeidian H. Novel 1,2,3-Triazole-Based Benzothiazole Derivatives: Efficient Synthesis, DFT, Molecular Docking, and ADMET Studies. Molecules 2022; 27:8555. [PMID: 36500647 PMCID: PMC9740823 DOI: 10.3390/molecules27238555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A new series of 1,2,3-triazole derivatives 5a-f based on benzothiazole were synthesized by the 1,3-dipolar cycloaddition reaction of S-propargyl mercaptobenzothiazole and α-halo ester/amide in moderate to good yields (47-75%). The structure of all products was characterized by 1H NMR, 13C NMR, and CHN elemental data. This protocol is easy and green and proceeds under mild and green reaction conditions with available starting materials. The structural and electronic analysis and 1H and 13C chemical shifts of the characterized structure of 5e were also calculated by applying the B3LYP/6-31 + G(d, p) level of density functional theory (DFT) method. In the final section, all the synthesized compounds were evaluated for their anti-inflammatory activity by biochemical COX-2 inhibition, antifungal inhibition with CYP51, anti-tuberculosis target protein ENR, DPRE1, pks13, and Thymidylate kinase by molecular docking studies. The ADMET analysis of the molecules 5a-f revealed that 5d and 5a are the most-promising drug-like molecules out of the six synthesized molecules.
Collapse
Affiliation(s)
- Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 14515-775, Iran
| | - Mahdieh Mohammad Karbasi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 14515-775, Iran
| | - Parsa Hesamzadeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 14515-775, Iran
| | - Hamid Reza Shaker
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 14515-775, Iran
| | - Asghar Amiri
- Department of Science, Payame Noor University (PNU), Tehran P.O. Box 19395-4697, Iran
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), Tehran P.O. Box 19395-4697, Iran
| |
Collapse
|
6
|
Ahmad W, Ansari MA, Yusuf M, Amir M, Wahab S, Alam P, Alomary MN, Alhuwayri AA, Khan M, Ali A, Warsi MH, Ashraf K, Ali M. Antibacterial, Anticandidal, and Antibiofilm Potential of Fenchone: In Vitro, Molecular Docking and In Silico/ADMET Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:2395. [PMID: 36145798 PMCID: PMC9505686 DOI: 10.3390/plants11182395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study is to investigate the effective antimicrobial and antibiofilm properties of fenchone, a biologically active bicyclic monoterpene, against infections caused by bacteria and Candida spp. The interactions between fenchone and three distinct proteins from Escherichia coli (β-ketoacyl acyl carrier protein synthase), Candida albicans (1, 3-β−D-glucan synthase), and Pseudomonas aeruginosa (Anthranilate-CoA ligase) were predicted using molecular docking and in silico/ADMET methods. Further, to validate the in-silico prediction, the antibacterial and antifungal potential of fenchone was evaluated against E. coli, P. aeruginosa, and C. albicans by determining minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and minimum fungicidal concentration (MFC). The lowest MIC/MBC values of fenchone against E. coli and P. aeruginosa obtained was 8.3 ± 3.6/25 ± 0.0 and 266.6 ± 115.4/533.3 ± 230.9 mg/mL, respectively, whereas the MIC/MFC value for C. albicans was found to be 41.6 ± 14.4/83.3 ± 28.8 mg/mL. It was observed that fenchone has a significant effect on antimicrobial activity (p < 0.05). Our findings demonstrated that fenchone at 1 mg/mL significantly reduced the production of biofilm (p < 0.001) in E. coli, P. aeruginosa, and C. albicans by 70.03, 64.72, and 61.71%, respectively, in a dose-dependent manner when compared to control. Based on these results, it has been suggested that the essential oil from plants can be a great source of pharmaceutical ingredients for developing new antimicrobial drugs.
Collapse
Affiliation(s)
- Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince-Sattam Bin-Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | | | - Maria Khan
- Department of Pharmacognosy, R.V. Northland Institute, Dadri 203207, India
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kamran Ashraf
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy 42, Knowledge Park—III, Greater Noida 201308, India
| |
Collapse
|
7
|
Z. Officinale-Doped Silver/Calcium Oxide Nanocomposites: Catalytic Activity and Antimicrobial Potential with Molecular Docking Analysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Mchiri C, Edziri H, Hajji H, Bouachrine M, Acherar S, Frochot C, Eldine HOB, Moussa SB, Nasri H. 2-Aminopyridine Cadmium (II) meso-chlorophenylporphyrin coordination compound. Photophysical properties, X-ray molecular structure, antimicrobial activity, and molecular docking analysis. J CHEM SCI 2022. [DOI: 10.1007/s12039-021-02022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Gupta T, Kataria R, Sardana S. A Comprehensive Review on Current perspectives of Flavonoids as antimicrobial agent. Curr Top Med Chem 2022; 22:425-434. [PMID: 35040402 DOI: 10.2174/1568026622666220117104709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Flavonoids are the secondary plant metabolites with diversities of pharmacological activities like antioxidant, anticancer, anti-inflammatory, hepatoprotective, free radical scavenging activity and antiviral activities. Flavonoids have also been proved as a major contributor to the antimicrobial phytochemicals. Being the major substituent of antibiotics today flavonoids has attained high attention as there is increase in persistence of untreatable microbial infections due to microbial resistance. This review demonstrates the screening, isolation of extracts and derivatisation of various flavonoids and their evaluation for antimicrobial potency. Recent advancements of various derivatives of flavonoids having antimicrobial activity has also been discussed in this review. This review helps researchers to get vast knowledge about flavonoids and also give an idea for current scenario of flavonoids and its applications as antimicrobial agent.
Collapse
Affiliation(s)
- Tanya Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India
| | - Ritu Kataria
- G.V.M College of Pharmacy, Sonipat, Haryana, India
| | - Satish Sardana
- Amity Institute of Pharmacy, Amity University, Haryana, Gurugram, India
| |
Collapse
|
10
|
Suarez AFL, Tirador ADG, Villorente ZM, Bagarinao CF, Sollesta JVN, Dumancas GG, Sun Z, Zhan ZQ, Saludes JP, Dalisay DS. The Isorhamnetin-Containing Fraction of Philippine Honey Produced by the Stingless Bee Tetragonula biroi Is an Antibiotic against Multidrug-Resistant Staphylococcus aureus. Molecules 2021; 26:1688. [PMID: 33802916 PMCID: PMC8002709 DOI: 10.3390/molecules26061688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Honey exhibits antibacterial and antioxidant activities that are ascribed to its diverse secondary metabolites. In the Philippines, the antibacterial and antioxidant activities, as well as the bioactive metabolite contents of the honey, have not been thoroughly described. In this report, we investigated the in vitro antibacterial and antioxidant activities of honey from Apis mellifera and Tetragonula biroi, identified the compound responsible for the antibacterial activity, and compared the observed bioactivities and metabolite profiles to that of Manuka honey, which is recognized for its antibacterial and antioxidant properties. The secondary metabolite contents of honey were extracted using a nonionic polymeric resin followed by antibacterial and antioxidant assays, and then spectroscopic analyses of the phenolic and flavonoid contents. Results showed that honey extracts produced by T. biroi exhibits antibiotic activity against Staphylococcal pathogens as well as high antioxidant activity, which are correlated to its high flavonoid and phenolic content as compared to honey produced by A. mellifera. The bioassay-guided fractionation paired with Liquid Chromatography Mass Spectrometry (LCMS) and tandem MS analyses found the presence of the flavonoid isorhamnetin (3-methylquercetin) in T. biroi honey extract, which was demonstrated as one of the compounds with inhibitory activity against multidrug-resistant Staphylococcus aureus ATCC BAA-44. Our findings suggest that Philippine honey produced by T. biroi is a potential nutraceutical that possesses antibiotic and antioxidant activities.
Collapse
Affiliation(s)
- Angelica Faith L. Suarez
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
| | - April Dawn G. Tirador
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
| | - Zenith M. Villorente
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Cathrina F. Bagarinao
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Jan Vincent N. Sollesta
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Gerard G. Dumancas
- Department of Mathematics and Physical Sciences, Louisiana State University at Alexandria, Alexandria, LA 71302, USA;
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
| | - Zhe Sun
- Shimadzu Asia Pacific (SAP), Singapore Science Park I, Singapore 118264, Singapore; (Z.S.); (Z.Q.Z.)
| | - Zhao Qi Zhan
- Shimadzu Asia Pacific (SAP), Singapore Science Park I, Singapore 118264, Singapore; (Z.S.); (Z.Q.Z.)
| | - Jonel P. Saludes
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
11
|
Ugboko HU, Nwinyi OC, Oranusi SU, Fatoki TH, Akinduti PA, Enibukun JM. In Silico Screening and Analysis of Broad-Spectrum Molecular Targets and Lead Compounds for Diarrhea Therapy. Bioinform Biol Insights 2019; 13:1177932219884297. [PMID: 31695343 PMCID: PMC6820192 DOI: 10.1177/1177932219884297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Diarrhoeal disease kills about 1.5 million human beings per year across the continents. The enterotoxigenic Escherichia coli (ETEC) pathotype has been noted as a major cause of diarrheal disease in human and livestock. The aim of this study is to identify broad-spectrum molecular targets in bacteria and broad-spectrum lead compounds (functional inhibitors) with high efficacy and no significant adverse implication on human systems, in relevance to diarrhea therapy through computational approaches which include phylogenetics, target prediction, molecular docking, and molecular flexibility dynamic simulations. Three molecular target genes, murA, dxr, and DnaE, which code for uridine diphosphate-N-acetylglucosamine-1-carboxyvinyltransferase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase, and deoxyribonucleic acid polymerase III alpha subunit, respectively, were found to be highly conserved in 7 diarrhea-causing microbes. In addition, 21 potential compounds identified showed varied degree of affinity to these enzymes. At free energy cutoff of -8.0 kcal/mol, the highest effective molecular target was DNA polymerase III alpha subunit (PDB ID: 4JOM) followed by UDP-N-acetylglucosamine-1-carboxyvinyltransferase (PDB ID: 5UJS), and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PDB ID: 1ONN), while the highest effective lead compound was N-coeleneterazine followed by amphotericin B, MMV010576, MMV687800, MMV028694, azithromycin, and diphenoxylate. The flexibility dynamics of DNA polymerase III alpha subunit unraveled the atomic fluctuation which potentially implicated Asp593 as unstable active site amino acid residue. In conclusion, bacteria DnaE gene or its protein is a highly promising molecular target for the next generation of antibacterial drugs of the class of N-coeleneterazine.
Collapse
Affiliation(s)
- Harriet U Ugboko
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Obinna C Nwinyi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Solomon U Oranusi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Toluwase H Fatoki
- Enzyme Biotechnology and Pharmaceutics Research Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Paul A Akinduti
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Jesupemi M Enibukun
- Molecular Biology and Environmental Microbiology Research Unit, Department of Microbiology, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
12
|
Richa K, Karmaker R, Longkumer N, Das V, Bhuyan PJ, Pal M, Sinha UB. Synthesis, In Vitro Evaluation, Molecular Docking and DFT Studies of Some Phenyl Isothiocyanates as Anticancer Agents. Anticancer Agents Med Chem 2019; 19:2211-2222. [PMID: 31566135 DOI: 10.2174/1871520619666190930122137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Isothiocyanates (ITCs) are small molecules that are important in synthetic organic chemistry, but their actual importance lies in their potential as anti-carcinogens. Through this piece of work, an effort was made to assess the anti-cancer activity of some simple ITCs which can be synthesized through easy greener pathways. METHODS Cell proliferation assay was performed on ovarian cancer cells (PA-1) and non-tumorigenic ovarian epithelial cells (IOSE-364). Furthermore, qRT-PCR for transcript expression levels of Spindlin1 and caspases in ovarian cancer cells and cell cycle analysis was performed. In silico studies were incorporated to understand the mode of ligand-protein interaction, ADME/Toxicity and drug-likeliness parameters. Density functional theory studies have been also been employed on the ITCs to assess their efficiency in anticancer activity. RESULTS An inexpensive, environmentally benign pathway has been developed for synthesizing a series of ITCs. Among the synthesized ITCs, NC6 showed better cytotoxic effects as compared to its counterparts. Novel findings revealed that NC6 had 5-folds lower transcript expression levels of Spindlin1 and induced caspases 3 and 7 expressions assessed by qRT-PCR in ovarian cancer cells. Furthermore, flow cytometry assay showed the cell cycle arrest at G1/S phase of cell cycle. The molecular docking studies revealed favorable binding affinities and the physiochemical parameters were predicted to be compatible with drug-likeliness. CONCLUSION The results demonstrated the possibility that small isothiocyanate molecules which can be synthesized by a simple green methodology, can pose as promising candidates for their application as anticancer agents.
Collapse
Affiliation(s)
- Kikoleho Richa
- Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India.,Bioinformatics Facility Centre, Nagaland University, Lumami-798627, Nagaland, India
| | - Rituparna Karmaker
- Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India
| | - Naruti Longkumer
- Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India
| | - Vishal Das
- Biological Sciences and Technology Division, Biotechnology Group, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific and Innovative Research, Jorhat, Assam-785006, India
| | - Pulak J Bhuyan
- Chemical Sciences and Technology Division, CSIR- North East Institute of Science and Technology (NEIST), Jorhat, Assam-785006, India
| | - Mintu Pal
- Biological Sciences and Technology Division, Biotechnology Group, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific and Innovative Research, Jorhat, Assam-785006, India
| | - Upasana B Sinha
- Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India
| |
Collapse
|
13
|
Trabelsi S, Issaoui N, Brandán SA, Bardak F, Roisnel T, Atac A, Marouani H. Synthesis and physic-chemical properties of a novel chromate compound with potential biological applications, bis(2-phenylethylammonium) chromate(VI). J Mol Struct 2019; 1185:168-182. [DOI: 10.1016/j.molstruc.2019.02.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Surineni G, Gao Y, Hussain M, Liu Z, Lu Z, Chhotaray C, Islam MM, Hameed HMA, Zhang T. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors of Mycobacterium tuberculosis. MEDCHEMCOMM 2019; 10:49-60. [PMID: 30774854 PMCID: PMC6349066 DOI: 10.1039/c8md00389k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) has become one of the most significant public health problems in recent years. Antibiotic therapy remains the mainstay of TB control strategies, but the increasing resistance of mycobacterial species has heightened alarm, requiring the development of novel drugs in order to improve treatment outcomes. Here, as an effort to identify novel and effective antitubercular agents, we designed and synthesized a series of novel substituted benzimidazolallylidenehydrazinylmethylthiazole derivatives via a multi-component molecular hybridization approach with single molecular architecture. Our design strategy involved assembling the antitubercular pharmacophoric fragments benzimidazole, 2-aminothiazole and substituted α,β-unsaturated ketones via condensation reactions. All the newly synthesized compounds were fully characterized via NMR and mass spectral data and evaluated for in vitro biological activity against the H37Ra strain of Mycobacterium tuberculosis. From the biological evaluation data, we identified some effective compounds, of which 8g and 7e were the most active ones (both having MIC values of 2.5 μg mL-1). In addition, compound 8g exhibited a lower cytotoxicity profile. We conceive that compound 8g may serve as a chemical probe of interest for further lead optimization studies with the general aim of developing novel and effective antitubercular agents.
Collapse
Affiliation(s)
- Goverdhan Surineni
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Muzammal Hussain
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| |
Collapse
|
15
|
Peron G, Sut S, Pellizzaro A, Brun P, Voinovich D, Castagliuolo I, Dall'Acqua S. The antiadhesive activity of cranberry phytocomplex studied by metabolomics: Intestinal PAC-A metabolites but not intact PAC-A are identified as markers in active urines against uropathogenic Escherichia coli. Fitoterapia 2017; 122:67-75. [DOI: 10.1016/j.fitote.2017.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
|
16
|
Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol 2017; 8:1566. [PMID: 28861072 PMCID: PMC5559502 DOI: 10.3389/fmicb.2017.01566] [Citation(s) in RCA: 395] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most common pathological conditions in both community and hospital settings. It has been estimated that about 150 million people worldwide develop UTI each year, with high social costs in terms of hospitalizations and medical expenses. Among the common uropathogens associated to UTIs development, UroPathogenic Escherichia coli (UPEC) is the primary cause. UPEC strains possess a plethora of both structural (as fimbriae, pili, curli, flagella) and secreted (toxins, iron-acquisition systems) virulence factors that contribute to their capacity to cause disease, although the ability to adhere to host epithelial cells in the urinary tract represents the most important determinant of pathogenicity. On the opposite side, the bladder epithelium shows a multifaceted array of host defenses including the urine flow and the secretion of antimicrobial substances, which represent useful tools to counteract bacterial infections. The fascinating and intricate dynamics between these players determine a complex interaction system that needs to be revealed. This review will focus on the most relevant components of UPEC arsenal of pathogenicity together with the major host responses to infection, the current approved treatment and the emergence of resistant UPEC strains, the vaccine strategies, the natural antimicrobial compounds along with innovative anti-adhesive and prophylactic approaches to prevent UTIs.
Collapse
Affiliation(s)
| | | | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of TurinTorino, Italy
| |
Collapse
|
17
|
Kwak C, Lee Y, Jeon D, Durai P, Ryoo S, Kim Y. 3,6-Dihydroxyflavone Has Antituberculosis Activity and Suppresses Lung Inflammation. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chulhee Kwak
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 143-701 Korea
| | - Yeongjoon Lee
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 143-701 Korea
| | - Dasom Jeon
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 143-701 Korea
| | | | - Sungweon Ryoo
- Korean National Tuberculosis Association; Seoul 06763 South Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 143-701 Korea
| |
Collapse
|
18
|
Crystal structure of MBP-PigG fusion protein and the essential function of PigG in the prodigiosin biosynthetic pathway in Serratia marcescens FS14. Int J Biol Macromol 2017; 99:394-400. [PMID: 28258005 DOI: 10.1016/j.ijbiomac.2017.02.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/23/2022]
Abstract
Prodigiosin, a tripyrrole red pigment is synthesized by Serratia and some other microbes through a bifurcated biosynthesis pathway; MBC (4-methoxy-2,2'-bipyrrole-5-carbaldehyde) and MAP (2-methyl-3-n-amyl-pyrrole) are synthesized separately and then condensed by PigC to form prodigiosin. PigI, PigG and PigA have been shown to be involved in the first steps of MBC biosynthesis (proline incorporation). The crystal structure of PigG was resolved to elucidate its function and mechanism. PigG, an acyl carrier protein (ACP), features the ACP architecture:, a helical bundle fold containing three major helices and a minor distorted helix together with a conserved "S" motif. An in-frame deletion mutation of the pigG gene abolished the synthesis of prodigiosin in Serratia marcescens FS14. The production of prodigiosin was fully restored by complementation of intact pigG; however the S36A mutant was not able to restore function in the in-frame deletion pigG mutant, indicating that PigG and the conserved serine residue (S36) of PigG are essential for the synthesis of prodigiosin.
Collapse
|
19
|
Liu Q, Sun Y, Chen J, Li P, Li C, Niu G, Jiang L. Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit. BMC Genomics 2016; 17:929. [PMID: 27852215 PMCID: PMC5112726 DOI: 10.1186/s12864-016-3275-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Symplocos paniculata, asiatic sweetleaf or sapphire berry, is a widespread shrub or small tree from Symplocaceae with high oil content and excellent fatty acid composition in fruit. It has been used as feedstocks for biodiesel and cooking oil production in China. Little transcriptome information is available on the regulatory molecular mechanism of oil accumulation at different fruit development stages. RESULTS The transcriptome at four different stages of fruit development (10, 80,140, and 170 days after flowering) of S. paniculata were analyzed. Approximately 28 million high quality clean reads were generated. These reads were trimmed and assembled into 182,904 non-redundant putative transcripts with a mean length of 592.91 bp and N50 length of 785 bp, respectively. Based on the functional annotation through Basic Local Alignment Search Tool (BLAST) with public protein database, the key enzymes involved in lipid metabolism were identified, and a schematic diagram of the pathway and temporal expression patterns of lipid metabolism was established. About 13,939 differentially expressed unigenes (DEGs) were screened out using differentially expressed sequencing (DESeq) method. The transcriptional regulatory patterns of the identified enzymes were highly related to the dynamic oil accumulation along with the fruit development of S. paniculata. In addition, quantitative real-time PCR (qRT-PCR) of six vital genes was significantly correlated with DESeq data. CONCLUSIONS The transcriptome sequences obtained and deposited in NCBI would enrich the public database and provide an unprecedented resource for the discovery of the genes associated with lipid metabolism pathway in S. paniculata. Results in this study will lay the foundation for exploring transcriptional regulatory profiles, elucidating molecular regulatory mechanisms, and accelerating genetic engineering process to improve the yield and quality of seed oil of S. paniculata.
Collapse
Affiliation(s)
- Qiang Liu
- Central South University of Forestry and Technology, 498 South Shaoshan Rd., Changsha, Hunan, 410004, China.,Texas A&M AgriLife Research Center at El Paso, 1380 A&M Circle, El Paso, TX, 79927, USA
| | - Youping Sun
- Texas A&M AgriLife Research Center at El Paso, 1380 A&M Circle, El Paso, TX, 79927, USA
| | - Jinzheng Chen
- Central South University of Forestry and Technology, 498 South Shaoshan Rd., Changsha, Hunan, 410004, China.,Hunan Academy of Forestry, 658 South Shaoshan Rd., Changsha, Hunan, 410004, China
| | - Peiwang Li
- Hunan Academy of Forestry, 658 South Shaoshan Rd., Changsha, Hunan, 410004, China
| | - Changzhu Li
- Hunan Academy of Forestry, 658 South Shaoshan Rd., Changsha, Hunan, 410004, China
| | - Genhua Niu
- Texas A&M AgriLife Research Center at El Paso, 1380 A&M Circle, El Paso, TX, 79927, USA
| | - Lijuan Jiang
- Central South University of Forestry and Technology, 498 South Shaoshan Rd., Changsha, Hunan, 410004, China.
| |
Collapse
|