1
|
Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases-What Is the Secret of Their Activity? Int J Mol Sci 2023; 24:ijms24021579. [PMID: 36675102 PMCID: PMC9863470 DOI: 10.3390/ijms24021579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Secreted phospholipases of type A2 (sPLA2s) are proteins of 14-16 kDa present in mammals in different forms and at different body sites. They are involved in lipid transformation processes, and consequently in various immune, inflammatory, and metabolic processes. sPLA2s are also major components of snake venoms, endowed with various toxic and pharmacological properties. The activity of sPLA2s is not limited to the enzymatic one but, through interaction with different types of molecules, they exert other activities that are still little known and explored, both outside and inside the cells, as they can be endocytosed. The aim of this review is to analyze three features of sPLA2s, yet under-explored, knowledge of which could be crucial to understanding the activity of these proteins. The first feature is their disulphide bridge pattern, which has always been considered immutable and necessary for their stability, but which might instead be modulable. The second characteristic is their ability to undergo various post-translational modifications that would control their interaction with other molecules. The third feature is their ability to participate in active molecular condensates both on the surface and within the cell. Finally, the implications of these features in the design of anti-inflammatory drugs are discussed.
Collapse
|
2
|
Abstract
The secretory phospholipase A2 (sPLA2) group of secreted enzymes hydrolyze phospholipids and lead to the production of multiple biologically active lipid mediators. sPLA2s and their products (e.g., eicosanoids) play a significant role in the pathophysiology of various inflammatory diseases, including life-threatening lung disorders such as acute lung injury (ALI) and the Acute Respiratory Distress Syndrome (ARDS). The ALI/ARDS spectrum of severe inflammatory conditions is caused by direct (such as bacterial or viral pneumonia) or indirect insults (sepsis) that are associated with high morbidity and mortality. Several sPLA2 isoforms are upregulated in patients with ARDS as well as in multiple ALI preclinical models, and individual sPLA2s exert unique roles in regulating ALI pathophysiology. This brief review will summarize the contributions of specific sPLA2 isoforms as markers and mediators in ALI, supporting a potential therapeutic role for targeting them in ARDS.
Collapse
Affiliation(s)
- Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu Maw Htwe
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Canu G, De Paolis E, Righino B, Mazzuccato G, De Paolis G, Capoluongo E, De Rosa MC, Urbani A, Gunes AM, Minucci A. Identification and in silico characterization of a novel PKLR genotype in a Turkish newborn. Mol Biol Rep 2020; 47:8311-8315. [PMID: 32974842 DOI: 10.1007/s11033-020-05836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/09/2020] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase deficiency (PKD) is the most common glycolytic defect leading to chronic nonspherocytic hemolytic anemia (CNSHA). Clinical manifestations of PKD reflect the symptoms and complications of the chronic hemolysis, including anemia, jaundice, bilirubin gallstones due to hyperbilirubinemia, splenomegaly and iron overload. In this study, we report the finding of a 5-months-old Turkish male newborn with moderate CNSHA and PKD. Mutation screening of Pyruvate Kinase Liver/Red (PKLR) gene revealed that the patient carried the known pathogenic variant (PV) c.1456C > T (p.Arg486Trp) and an unreported variant c.1067T > G (p.Met356Arg). Computational variant analysis (CVA) highlighted the deleterious structural effects on the mutant PK enzyme, suggesting its pathogenic role. In this patient, the molecular evaluation of PKD, that allowed the identification of the novel PKLR genotype, coupled with CVA led to the definitive and correct diagnosis of CNSHA.
Collapse
Affiliation(s)
- Giulia Canu
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisa De Paolis
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Righino
- Istituto Di Chimica del Riconoscimento Molecolare (ICRM) - CNR; Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR, Rome, Italy
| | - Giorgia Mazzuccato
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulio De Paolis
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ettore Capoluongo
- Università Federico II-CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Maria Cristina De Rosa
- Istituto Di Chimica del Riconoscimento Molecolare (ICRM) - CNR; Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR, Rome, Italy
| | - Andrea Urbani
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
- Catholic University of the Sacred Heart, Rome, Italy.
| | - Adalet Meral Gunes
- Department of Pediatric Hematology, Uludağ University Hospital, Görükle, Bursa, Turkey
| | - Angelo Minucci
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
4
|
Khan MI, Hariprasad G. Human Secretary Phospholipase A2 Mutations and Their Clinical Implications. J Inflamm Res 2020; 13:551-561. [PMID: 32982370 PMCID: PMC7502393 DOI: 10.2147/jir.s269557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
Phospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolysis of the sn-2 fatty acids of membrane phospholipids to release arachidonic acid. PLA2s are the rate limiting enzyme for the downstream synthesis of prostaglandins and leukotrienes that are the main mediators of inflammation. The extracellular forms of this enzyme are also called the secretary phospholipase A2 (sPLA2) and are distributed extensively in most of the tissues in the human body. Their integral role in inflammatory pathways has been the primary reason for the extensive research on this molecule. The catalytic mechanism of sPLA2 is initiated by a histidine/aspartic acid/calcium complex within the active site. Though they are known to have certain housekeeping functions, certain mutations of sPLA2 are known to be implicated in causation of certain pathologies leading to diseases such as atherosclerosis, cardiovascular diseases, benign fleck retina, neurodegeneration, and asthma. We present an overview of human sPLA2 and a comprehensive compilation of the mutations that result in various disease phenotypes. The study not only helps to have a holistic understanding of human sPLA2 mutations and their clinical implications, but is also a useful platform to initiate research pertaining to structure–function relationship of the mutations to develop effective therapies for management of these diseases.
Collapse
Affiliation(s)
- Mohd Imran Khan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
5
|
Righino B, Bozzi M, Pirolli D, Sciandra F, Bigotti MG, Brancaccio A, De Rosa MC. Identification and Modeling of a GT-A Fold in the α-Dystroglycan Glycosylating Enzyme LARGE1. J Chem Inf Model 2020; 60:3145-3156. [PMID: 32356985 PMCID: PMC7340341 DOI: 10.1021/acs.jcim.0c00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
acetylglucosaminyltransferase-like protein LARGE1 is an enzyme
that is responsible for the final steps of the post-translational
modifications of dystroglycan (DG), a membrane receptor that links
the cytoskeleton with the extracellular matrix in the skeletal muscle
and in a variety of other tissues. LARGE1 acts by adding the repeating
disaccharide unit [-3Xyl-α1,3GlcAβ1-] to the extracellular
portion of the DG complex (α-DG); defects in the LARGE1 gene result in an aberrant glycosylation of α-DG and consequent
impairment of its binding to laminin, eventually affecting the connection
between the cell and the extracellular environment. In the skeletal
muscle, this leads to degeneration of the muscular tissue and muscular
dystrophy. So far, a few missense mutations have been identified within
the LARGE1 protein and linked to congenital muscular dystrophy, and
because no structural information is available on this enzyme, our
understanding of the molecular mechanisms underlying these pathologies
is still very limited. Here, we generated a 3D model structure of
the two catalytic domains of LARGE1, combining different molecular
modeling approaches. Furthermore, by using molecular dynamics simulations,
we analyzed the effect on the structure and stability of the first
catalytic domain of the pathological missense mutation S331F that
gives rise to a severe form of muscle–eye–brain disease.
Collapse
Affiliation(s)
- Benedetta Righino
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Manuela Bozzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy.,Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Davide Pirolli
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Francesca Sciandra
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Maria Giulia Bigotti
- School of Translational Health Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, BS2 8HW Bristol, U.K.,School of Biochemistry, University Walk, University of Bristol, BS8 1TD Bristol, U.K
| | - Andrea Brancaccio
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, L.go F. Vito 1, 00168 Rome, Italy.,School of Biochemistry, University Walk, University of Bristol, BS8 1TD Bristol, U.K
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
6
|
van Hensbergen VP, Wu Y, van Sorge NM, Touqui L. Type IIA Secreted Phospholipase A2 in Host Defense against Bacterial Infections. Trends Immunol 2020; 41:313-326. [PMID: 32151494 DOI: 10.1016/j.it.2020.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
The enzyme type IIA secreted phospholipase A2 (sPLA2-IIA) is crucial for mammalian innate host defense against bacterial pathogens. Most studies have investigated the role of sPLA2-IIA in systemic bacterial infections, identifying molecular pathways of bacterial resistance against sPLA2-IIA-mediated killing, and providing insight into sPLA2-IIA mechanisms of action. Sensitization of (antibiotic-resistant) bacteria to sPLA2-IIA action by blocking bacterial resistance or by applying sPLA2-IIA to treat bacterial infections might represent a therapeutic option in the future. Because sPLA2-IIA is highly expressed at mucosal barriers, we also discuss how sPLA2-IIA is likely to be an important driver of microbiome composition; we anticipate that future research in this area may bring new insights into the role of sPLA2-IIA in health and disease.
Collapse
Affiliation(s)
- Vincent P van Hensbergen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yongzheng Wu
- Unité de Biologie Cellulaire de l'infection Microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Lhousseine Touqui
- Mucoviscidose et Bronchopathies Chroniques, département Santé Globale; Pasteur Institute, Paris, France.
| |
Collapse
|
7
|
Monteiro LLS, Franco OL, Alencar SA, Porto WF. Deciphering the structural basis for glucocorticoid resistance caused by missense mutations in the ligand binding domain of glucocorticoid receptor. J Mol Graph Model 2019; 92:216-226. [PMID: 31401440 DOI: 10.1016/j.jmgm.2019.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/31/2019] [Indexed: 11/25/2022]
Abstract
The glucocorticoid resistance hereditary condition may emerge from the occurrence of point mutations in the glucocorticoid receptor (GR), which could impair its functionality. Because the main feature of such pathology is the resistance of the hypothalamic-pituitary-adrenal axis to the hormone cortisol, we used the GR ligand binding domain three-dimensional structure to perform computational analysis for eight variants known to cause this clinical condition (I559 N, V571A, D641V, G679S, F737L, I747 M, L753F and L773P), aiming to understand, on the atom scale, how they cause glucocorticoid resistance. We observed that the mutations generated a reduced affinity to cortisol and they alter some loop conformations, which could be a consequence from changes in protein motion, which in turn could result from the reduced stability of mutant GR structures. Therefore, the analyzed mutations compromise the GR ligand binding domain structure and cortisol binding, which could characterize the glucocorticoid resistance phenotype.
Collapse
Affiliation(s)
- L L S Monteiro
- Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - O L Franco
- Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - S A Alencar
- Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - W F Porto
- Porto Reports, Brasília, DF, Brazil; S-Inova Biotech, Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| |
Collapse
|