1
|
Schaeffer N, Vaz ICM, Pinheiro MS, Olea F, Hanada T, Dourdain S, Coutinho JAP. Examining the potential of type V DESs for the solvent extraction of metal ions. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2025; 27:4438-4463. [PMID: 40206710 PMCID: PMC11975223 DOI: 10.1039/d5gc00489f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
Growing interest in sustainable and efficient metal ion separation has led to the exploration of non-ionic deep eutectic solvents (DESs), also known as type V DESs, as promising alternatives to conventional organic phases in solvent extraction (SX). This work summarizes recent developments, focusing solely on the use of non-ionic DESs and excluding ionic DESs, for the separation of metal ions from synthetic and real leachates. The review does not aim to exhaustively cover all studies but focuses on the molecular mechanisms of SX, how inherent properties of DESs influence these mechanisms, and how they can be harnessed to improve the separation selectivity. It further highlights the physico-chemical properties of DESs in SX and compares them with traditional systems, emphasizing similarities and new opportunities. The overall aim is to clarify the potential and limitations of type V DESs in SX, including their often touted credentials as "green solvents", and to offer guidelines for their practical use and addressing skepticism towards novel solvents in hydrometallurgy.
Collapse
Affiliation(s)
- Nicolas Schaeffer
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Inês C M Vaz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Maísa Saldanha Pinheiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Felipe Olea
- Laboratory of Separation Process Intensification (SPI), Department of Chemical Engineering and Bioprocess, University of Santiago de Chile (USACH) Chile
| | - Takafumi Hanada
- Department of Applied Chemistry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University 2-1 Minamijosanjima Tokushima Japan
| | - Sandrine Dourdain
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier BP 17171 Marcoule 30207 Bagnols-sur-Cèze France
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
2
|
Mangiacapre E, Celso FL, Triolo A, Ramondo F, Irving DJM, Alhadid A, Minceva M, Russina O. Structural Features of the Thymol-Carvacrol Equimolar Mixture: X-Ray Scattering and Molecular Dynamics. J Phys Chem B 2025; 129:3224-3236. [PMID: 40072525 DOI: 10.1021/acs.jpcb.4c07674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
We present a structural characterization of a low-transition-temperature mixture (LTTM), consisting of thymol and carvacrol, at an equimolar ratio. Carvacrol and thymol are natural regioisomers of terpenes. When combined at an equimolar ratio, they form a liquid mixture at room temperature, with supercooling capability and glass transition at ca. 210 K. Using small- and wide-angle X-ray scattering and molecular dynamics, we describe the structural complexity within this system. X-ray scattering reveals a low-Q peak at around 0.6 Å-1, indicating the existence of mesoscale structural heterogeneities, likely related to the segregation of polar moieties engaged in hydrogen bond (HB) interactions within an aromatic, apolar matrix. These polar interactions are predominantly a result of HBs involving thymol as the HB donor species. The liquid structure is also driven by O-H···π interactions, prevalently due to the ability of the carvacrol π-site to engage in this type of weak interaction as a HB acceptor. Besides, dispersive interactions affect the local arrangement of molecules, with a propensity of carvacrol rings to orient their first neighbors with a perpendicular orientation, while thymol tends to induce a closer approach of other thymol molecules with a preferential parallel alignment. Overall, we observed a complex structural arrangement driven by the interplay of both conventional and weak hydrogen bond interactions, with the aromatic nature of the compounds playing a pivotal role in shaping the system's architecture. Carvacrol and thymol, despite being very similar compounds, are characterized by distinctly different behavior in terms of the interactions they engage in with their neighbors, likely due to the different steric hindrance experienced by their hydroxyl groups, which are close to either a small methyl or a bulky isopropyl group, respectively. Such observations can provide useful hints to develop new solvents with tailored properties.
Collapse
Affiliation(s)
| | - Fabrizio Lo Celso
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department of Physics and Chemistry, Università di Palermo, Palermo 90133, Italy
| | - Alessandro Triolo
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
| | - Fabio Ramondo
- Department of Chemistry, University of Rome Sapienza, Rome 00185, Italy
| | | | - Ahmad Alhadid
- College of Engineering and Technology, American University of the Middle East, Kuwait 15453, Kuwait
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Olga Russina
- Department of Chemistry, University of Rome Sapienza, Rome 00185, Italy
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
| |
Collapse
|
3
|
Liu Y, Bai S, Liu H, Li K, Zhong S, Li M, Chen L, Tian M, Niu L, Fang M. Effect of different surface treatments on PEEK-enamel bonds: Bonding durability and mechanism. J Prosthet Dent 2025; 133:892.e1-892.e10. [PMID: 39709260 DOI: 10.1016/j.prosdent.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/23/2024]
Abstract
STATEMENT OF PROBLEM Polyetheretherketone (PEEK) has been used in clinical dentistry because of its excellent physical and biological properties. However, achieving an effective and durable bond with enamel is challenging because of its chemical inertness and low surface energy, and data on the effects of different surface treatments on the durability of PEEK-enamel bonds are scarce. PURPOSE The purpose of this in vitro study was to investigate airborne-particle abrasion, sulfuric acid etching, and the combined use of these treatments on the bonding durability of PEEK-enamel bonds and to gain a deeper understanding of their bonding mechanism. MATERIAL AND METHODS Sixty specimens were divided into 6 groups based on different surface treatments: untreated, sulfonation for 30 seconds, sulfonation for 60 seconds, airborne-particle abrasion, airborne-particle abrasion and sulfonation for 30 seconds, and sulfonation for 30 seconds and airborne-particle abrasion. Comprehensive evaluations were carried out on the surface morphology and physicochemical properties of the pretreated PEEK. After screening out the preferred surface treatment strategy of PEEK, the durability of PEEK-enamel bonds after thermal cycling (10 000 cycles at 5 to 55 °C) and the bonding mechanism were investigated by bond strength testing, cross-sectional topography, molecular dynamics,and Fourier transform infrared spectroscopy. Data were analyzed by 1-way analysis of variance, Weibull analysis, and the Fisher exact test (α=.05). RESULTS The shear bond strength of the 98% sulfuric acid etching group for either 30 seconds or 60 seconds was significantly higher than that of the other groups (P<.05). Intermolecular hydrogen bonding was found between PEEK and the methyl methacrylate- (MMA-) containing adhesive resin. Cross-sectional topography showed that the adhesive resin infiltrated into the pores of the sulfonated PEEK, thereby forming micromechanical locking at the bonded interface. The bond strength between the enamel and PEEK treated with 98% sulfuric acid for 60 seconds was found to be more reliable than that observed in the group treated with 98% sulfuric acid for 30 seconds after aging (P<.05). CONCLUSIONS PEEK pretreated by 98% sulfuric acid etching for 60 seconds presented the best physicochemical properties. This was better than combined etching and airborne-particle abrasion or airborne-particle abrasion alone and showed durable PEEK-enamel bonds with the application of an MMA-containing adhesive.
Collapse
Affiliation(s)
- Yuchen Liu
- Graduate student, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China. Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Shizhu Bai
- Professor, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Hengyan Liu
- Graduate student, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Kangjie Li
- Graduate student, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Sheng Zhong
- Technical Engineer, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Meng Li
- Attending, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics,School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Li Chen
- Attending, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Min Tian
- Assistant Professor, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Lina Niu
- Professor, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Ming Fang
- Assistant Professor, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics,School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
4
|
Chen L, Hu E, Shen P, Qian S, Heng W, Zhang J, Gao Y, Wei Y. Development of Amorphous Solid Dispersion Sustained-Release Formulations with Polymer Composite Matrix-Regulated Stable Release Plateaus. Pharm Res 2024; 41:1233-1245. [PMID: 38744732 DOI: 10.1007/s11095-024-03709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.
Collapse
Affiliation(s)
- Lingwu Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Jiuhua & Huayuan Pharmaceutical Co., Ltd, Chuzhou, 239000, People's Republic of China
| | - Enshi Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Peiya Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
5
|
Sahoo CP, Panda DK, Bhargava BL. Computational insight into the effect of alkyl chain length in tetraalkylammonium-based deep eutectic solvents. J Mol Graph Model 2024; 128:108717. [PMID: 38281418 DOI: 10.1016/j.jmgm.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The effect of the increase in the alkyl chain length of cation on the properties of deep eutectic solvents based on ethylene glycol has been investigated employing classical molecular dynamics simulations. The change in the structural and dynamic properties in both the bulk and liquid-vapor interface is explored through various analyses. The interaction between the anion and the ethylene glycol increases with an increase in the alkyl chain length of the cation, as observed in the increase of the lifetime of the hydrogen bond formed between the two. The terminal carbon atoms are found to be closer to each other when the cation changes from tetraethylammonium to tetrabutylammonium. The cations are located closer to the interface, and the association of the alkyl chains becomes more significant with increased alkyl chain length, decreasing the surface tension values.
Collapse
Affiliation(s)
- Chandan Prasad Sahoo
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, P.O.: Jatni, Khurda, Odisha 752050, India
| | - Deepak Kumar Panda
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, P.O.: Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, P.O.: Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
6
|
Cherniakova M, Varchenko V, Belikov K. Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction. CHEM REC 2024; 24:e202300267. [PMID: 37861277 DOI: 10.1002/tcr.202300267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Indexed: 10/21/2023]
Abstract
In the last 10 years the interest in deep eutectic solvents (DESs) as a new class of green solvents has considerably increased. The emergence of numerous of hydrophobic DESs has stimulated intensive research into their application in extraction technologies, including sample preparation. As the properties of such systems are highly dependent on the properties of their components (hydrogen bond donors and acceptors) and can be finely tuned, DESs can be successfully used for the extraction of both metal ions and organic substances, including biomolecules. Despite the rapidly increasing number of publications on the use of DESs as an extraction medium, including review articles, information on the extraction properties of DESs in terms of their chemical composition has not yet been summarized. This review covers available literature data on the physicochemical properties of menthol-based eutectic solvents and the results of their practical application as an extraction medium. Also, the appropriateness of using the term "DES" for all mixtures with melting points lower than the melting points of their components is discussed.
Collapse
Affiliation(s)
- Marharyta Cherniakova
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Victoria Varchenko
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Konstantin Belikov
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
- School of Chemistry, V.N. Karazin Kharkiv National University, 6 Svobody sq., 61022, Kharkiv, Ukraine
| |
Collapse
|
7
|
Makoś-Chełstowska P. VOCs absorption from gas streams using deep eutectic solvents - A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130957. [PMID: 36860043 DOI: 10.1016/j.jhazmat.2023.130957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) are one of the most severe atmospheric pollutants. They are mainly emitted into the atmosphere from anthropogenic sources such as automobile exhaust, incomplete fuel combustion, and various industrial processes. VOCs not only cause hazards to human health or the environment but also adversely affect industrial installation components due to their specific properties, i.e., corrosive and reactivity. Therefore, much attention is being paid to developing new methods for capturing VOCs from gaseous streams, i.e., air, process streams, waste streams, or gaseous fuels. Among the available technologies, absorption based on deep eutectic solvents (DES) is widely studied as a green alternative to other commercial processes. This literature review presents a critical summary of the achievements in capturing individual VOCs using DES. The types of used DES and their physicochemical properties affecting absorption efficiency, available methods for evaluating the effectiveness of new technologies, and the possibility of regeneration of DES are described. In addition, critical comments on the new gas purification methods and future perspectives are included.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; EcoTech Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
8
|
Morozova OV, Vasil'eva IS, Shumakovich GP, Zaitseva EA, Yaropolov AI. Deep Eutectic Solvents for Biotechnology Applications. BIOCHEMISTRY (MOSCOW) 2023; 88:S150-S175. [PMID: 37069119 DOI: 10.1134/s0006297923140092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Deep eutectic solvents (DESs) are an alternative to traditional organic solvents and ionic liquids and meet the requirements of "green" chemistry. They are easy to prepare using low-cost constituents, are non-toxic and biodegradable. The review analyzes literature on the use of DES in various fields of biotechnology, provides data on the types of DESs, methods for their preparation, and properties. The main areas of using DESs in biotechnology include extraction of physiologically active substances from natural resources, pretreatment of lignocellulosic biomass to improve enzymatic hydrolysis of cellulose, production of bioplastics, as well as a reaction medium for biocatalytic reactions. The aim of this review is to summarize available information on the use of new solvents for biotechnological purposes.
Collapse
Affiliation(s)
- Olga V Morozova
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Irina S Vasil'eva
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Galina P Shumakovich
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Elena A Zaitseva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander I Yaropolov
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
9
|
D'Hondt C, Morineau D. Dynamics of type V menthol-thymol deep eutectic solvents: Do they reveal non-ideality? J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Phenol-cyclohexanol eutectic mixtures: Phase diagram and microscopic structure by experimental and computational studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|