1
|
Thai QM, Tung NT, Do Thi Mai D, Ngo ST. Dimerization of the Aβ 42 under the Influence of the Gold Nanoparticle: A REMD Study. J Phys Chem B 2024; 128:11705-11713. [PMID: 39508442 DOI: 10.1021/acs.jpcb.4c06224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Advances in Alzheimer's disease (AD) are related to the oligomerization of Amyloid β (Aβ) peptides. Therefore, alteration of the process can prevent AD. We investigated the Aβ42 dimerization under the effects of gold nanoparticles using temperature replica-exchange molecular dynamics (REMD) simulations. The structural change of dimers in the presence and absence of the gold nanoparticle, Au55, was monitored over stable intervals. Physical insights into the oligomerization of Aβ were thus clarified. The computed metrics indicate that Au55 affects the progress of oligomerization. Specifically, the presence of the gold nanoparticle significantly modifies the structure of dimeric Aβ42. The β-content experienced a substantial decrease with the induction of Au55. The turn and coil-contents are also decreased under the effects of the gold nanoparticle. However, the α-content of the dimer exhibited a rigid increase. The influence of gold nanoparticles on the dimeric Aβ42 differs significantly from that of silver nanoparticles, which reduce β-content but increase coil-, turn-, and α-contents. The nature of inhibition will be discussed, in which the vdW interaction plays a driving force for the interaction between the Aβ42 dimer and the gold nanoparticle.
Collapse
Affiliation(s)
- Quynh Mai Thai
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam
| | - Dung Do Thi Mai
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 11021, Vietnam
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| |
Collapse
|
2
|
Thai QM, Tran PT, Phung HTT, Pham MQ, Ngo ST. Silver nanoparticles alter the dimerization of Aβ 42 studied by REMD simulations. RSC Adv 2024; 14:15112-15119. [PMID: 38720971 PMCID: PMC11078207 DOI: 10.1039/d4ra02197e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 01/06/2025] Open
Abstract
The aggregation of amyloid beta (Aβ) peptides is associated with the development of Alzheimer's disease (AD). However, there has been a growing belief that the oligomerization of Aβ species in different environments has a neurotoxic effect on the patient's brain, causing damage. It is necessary to comprehend the compositions of Aβ oligomers in order to develop medications that may effectively inhibit these neurotoxic forms that affect the nervous system of AD patients. Thus, dissociation or inhibition of Aβ aggregation may be able to prevent AD. To date, the search for traditional agents and biomolecules has largely been unsuccessful. In this context, nanoparticles have emerged as potential candidates to directly inhibit the formation of Aβ oligomers. The oligomerization of the dimeric Aβ peptides with or without the influence of a silver nanoparticle was thus investigated using temperature replica-exchange molecular dynamics (REMD) simulations. The physical insights into the dimeric Aβ oligomerization were clarified by analyzing intermolecular contact maps, the free energy landscape of the dimeric oligomer, secondary structure terms, etc. The difference in obtained metrics between Aβ with or without a silver nanoparticle provides a picture of the influence of silver nanoparticles on the oligomerization process. The underlying mechanisms that are involved in altering Aβ oligomerization will be discussed. The obtained results may play an important role in searching for Aβ inhibitor pathways.
Collapse
Affiliation(s)
- Quynh Mai Thai
- Laboratory of Biophysics, Institute of Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Huong T T Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute of Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Vargas-Rosales P, D’Addio A, Zhang Y, Caflisch A. Disrupting Dimeric β-Amyloid by Electric Fields. ACS PHYSICAL CHEMISTRY AU 2023; 3:456-466. [PMID: 37780539 PMCID: PMC10540290 DOI: 10.1021/acsphyschemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023]
Abstract
The early oligomers of the amyloid Aβ peptide are implicated in Alzheimer's disease, but their transient nature complicates the characterization of their structure and toxicity. Here, we investigate the stability of the minimal toxic species, i.e., β-amyloid dimers, in the presence of an oscillating electric field. We first use deep learning (AlphaFold-multimer) for generating initial models of Aβ42 dimers. The flexibility and secondary structure content of the models are then analyzed by multiple runs of molecular dynamics (MD). Structurally stable models are similar to ensemble representatives from microsecond-long MD sampling. Finally, we employ the validated model as the starting structure of MD simulations in the presence of an external oscillating electric field and observe a fast decay of β-sheet content at high field strengths. Control simulations using the helical dimer of the 42-residue leucine zipper peptide show higher structural stability than the Aβ42 dimer. The simulation results provide evidence that an external electric field (oscillating at 1 GHz) can disrupt amyloid oligomers which should be further investigated by experiments with brain organoids in vitro and eventually in vivo.
Collapse
Affiliation(s)
| | - Alessio D’Addio
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Yang Zhang
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| |
Collapse
|
4
|
Firouzi R, Sowlati-Hashjin S, Chávez-García C, Ashouri M, Karimi-Jafari MH, Karttunen M. Identification of Catechins' Binding Sites in Monomeric A β42 through Ensemble Docking and MD Simulations. Int J Mol Sci 2023; 24:ijms24098161. [PMID: 37175868 PMCID: PMC10179585 DOI: 10.3390/ijms24098161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
The assembly of the amyloid-β peptide (Aβ) into toxic oligomers and fibrils is associated with Alzheimer's disease and dementia. Therefore, disrupting amyloid assembly by direct targeting of the Aβ monomeric form with small molecules or antibodies is a promising therapeutic strategy. However, given the dynamic nature of Aβ, standard computational tools cannot be easily applied for high-throughput structure-based virtual screening in drug discovery projects. In the current study, we propose a computational pipeline-in the framework of the ensemble docking strategy-to identify catechins' binding sites in monomeric Aβ42. It is shown that both hydrophobic aromatic interactions and hydrogen bonding are crucial for the binding of catechins to Aβ42. Additionally, it has been found that all the studied ligands, especially EGCG, can act as potent inhibitors against amyloid aggregation by blocking the central hydrophobic region of Aβ. Our findings are evaluated and confirmed with multi-microsecond MD simulations. Finally, it is suggested that our proposed pipeline, with low computational cost in comparison with MD simulations, is a suitable approach for the virtual screening of ligand libraries against Aβ.
Collapse
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran 1496813151, Iran
| | | | - Cecilia Chávez-García
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mohammad Hossein Karimi-Jafari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
5
|
The effect of PC20:0 and di-C7-PC amphiphilic surfactants on the aggregation of Aβ1–40 and Aβ1–42 using molecular dynamics simulation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Dehabadi MH, Caflisch A, Ilie IM, Firouzi R. Interactions of Curcumin's Degradation Products with the Aβ 42 Dimer: A Computational Study. J Phys Chem B 2022; 126:7627-7637. [PMID: 36148988 DOI: 10.1021/acs.jpcb.2c05846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid-β (Aβ) dimers are the smallest toxic species along the amyloid-aggregation pathway and among the most populated oligomeric accumulations present in the brain affected by Alzheimer's disease (AD). A proposed therapeutic strategy to avoid the aggregation of Aβ into higher-order structures is to develop molecules that inhibit the early stages of aggregation, i.e., dimerization. Under physiological conditions, the Aβ dimer is highly dynamic and does not attain a single well-defined structure but is rather characterized by an ensemble of conformations. In a recent study, a highly heterogeneous library of conformers of the Aβ dimer was generated by an efficient sampling method with constraints based on ion mobility mass spectrometry data. Here, we make use of the Aβ dimer library to study the interaction with two curcumin degradation products, ferulic aldehyde and vanillin, by molecular dynamics (MD) simulations. Ensemble docking and MD simulations are used to provide atomistic detail of the interactions between the curcumin degradation products and the Aβ dimer. The simulations show that the aromatic residues of Aβ, and in particular 19FF20, interact with ferulic aldehyde and vanillin through π-π stacking. The binding of these small molecules induces significant changes on the 16KLVFF20 region.
Collapse
Affiliation(s)
- Maryam Haji Dehabadi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Boulevard, 1496813151 Tehran, Iran
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ioana M Ilie
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Boulevard, 1496813151 Tehran, Iran
| |
Collapse
|