1
|
Fatima S, Muhammad S, Adnan M, Kumar S, Chaudhry AR, Alexandar A. Optimizing nonlinear optical and photovoltaic performance in butterfly-shaped carbazole vs. borole derivatives: An implicit and explicit solvents-driven approach. J Mol Graph Model 2025; 138:109043. [PMID: 40186938 DOI: 10.1016/j.jmgm.2025.109043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Nonlinear optical (NLO) materials play a crucial role in various hi-tech optoelectronic applications, driving the quest for novel molecular frameworks with superior properties. In this context, this study systematically explores derivatives of phenanthrene-carbazole and phenyleno-borole, aiming to finely tune their NLO properties by incorporating multiple push-pull groups at their molecular periphery. The integration of these push-pull groups with the central core significantly enhances intramolecular charge transfer (ICT) within the molecular structures, leading to improved optical and NLO properties. Our findings highlight compound 3-PB as a standout among the designated compounds, exhibiting exceptional linear optical properties with the maximum linear isotropic (αiso) value of 95.77 × 10-24 esu and a maximum anisotropic (αaniso) of 106.6 × 10-24 esu. Notably, it also shows an impressive average static third-order NLO polarizability <γ> amplitude of 574.1 × 10-36 esu. A comparative study reveals that the <γ> amplitude of 3-PB is ∼78 times greater than p-NA (7.29 × 10-36 esu) at the M06/6-311G∗∗ level of theory. TD-DFT computations further attribute the remarkable NLO response of 3-PB to its lower transition energy, setting it apart from the other designated molecular systems. Additionally, TD-DFT calculations explored structure-NLO property relations through FMOs, DOS, and MEP maps. A detailed comparison of NLO polarizabilities and electronic properties highlights the significance of carbazole and borole-based systems in achieving strong NLO responses. Notably, compound 3-PB exhibits enhanced NLO properties due to the presence of polyaromatic rings and a boron atom serving as an acceptor, along with dimethylamine (donor group) substitutions at the periphery of the molecule. Beyond exceptional NLO performance, our entitled systems also demonstrate favorable photovoltaic potential. Specifically, compound 3-PB exhibits the highest LHE value of 0.999. Additionally, open circuit voltage values range from 1.55 to 3.02 eV, while lower ΔGreg values suggest that these compounds are promising candidates for sensitizing DSSC performance.
Collapse
Affiliation(s)
- Saliha Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Muhammad Adnan
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Santosh Kumar
- Department of Chemistry, Harcourt Butler Technical University, Kanpur, 208002, India
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, Bisha, P.O. Box 551, 61922, Saudi Arabia
| | - A Alexandar
- Department of Physics, St. Joseph's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620002, India
| |
Collapse
|
2
|
Shakila, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Nazir M, Muhammad S, Raza H, Shah SAA, Shahid M, Chaudhry AR, Kim SJ. Convergent Synthesis, Kinetics, and Computational Studies of Indole(Phenyl)Triazole Bi-Heterocycles Modified With Propanamides as Elastase Inhibitors. Chem Biodivers 2025; 22:e202401806. [PMID: 39572384 DOI: 10.1002/cbdv.202401806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024]
Abstract
Biological screening combined with the synthesis of heterocyclic compounds with numerous functions is the most effective approach available for pharmacological assessment of potential future medications. In the under taken research that is presented here, 4-(1H-indol-3-yl)butanoic acid was sequentially converted into 4-(1H-indol-3-yl)butanoate, 4-(1H-indol-3-yl)butanohydrazide, and 5-[3-(1H-indol-3-yl)propyl]-1,2,4-triazole-2-thiol as a nucleophile. By treating aryl amines with 3-bromopropanoyl chloride in a series of parallel reactions, different electrophiles were created, leading to the formation of N-(aryl)-3-bromopropanamides. After that, several electrophiles were used in the nucleophilic substitution process of 5 to produce the final bi-heterocyclic derivative. The structural confirmation of all the synthesized compounds was done by IR, 1H-NMR, 13C-NMR, and CHN analysis data. The enzyme inhibitory effects of these bi-heterocyclic propanamides were evaluated against elastase, and all these molecules were identified as potent inhibitors relative to the standard oleanolic acid with IC50 value 13.453 ± 0.015 µM used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 9d inhibited elastase competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.51 µM. Compound 9d's activity (IC50 = 0.142 ± 0.014 µM) significantly increased when a slightly bulky ethyl group was replaced for the solitary methyl group in 9c at the para-position. However, compound 9e's activity was significantly lower (IC50 = 38.338 ± 0.993 µM) when a more polar ethoxy group was replaced at the same para-position. This was likely because of electronic considerations. These molecules also exhibited mild cytotoxicity toward red blood cell membranes, when analyzing through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds for dealing with the elastase-related ailments such as lung diseases, cyclic neutropenia, pruritic skin disease, and liver infection.
Collapse
Affiliation(s)
- Shakila
- Department of Chemistry, Government College University, Lahore, Punjab, Pakistan
| | | | - Aziz-Ur-Rehman
- Department of Chemistry, Government College University, Lahore, Punjab, Pakistan
| | | | - Majid Nazir
- Department of Chemistry, Government College University, Lahore, Punjab, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam, South Korea
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar, Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA CawanganSelangor Kampus, Puncak Alam, Selangor, Malaysia
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Punjab, Pakistan
| | | | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam, South Korea
| |
Collapse
|
3
|
Muhammad S, Faiz A, Bibi S, Rehman SU, Alshahrani MY. Investigation of dual inhibition of antibacterial and antiarthritic drug candidates using combined approach including molecular dynamics, docking and quantum chemical methods. Comput Biol Chem 2024; 113:108218. [PMID: 39378822 DOI: 10.1016/j.compbiolchem.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Emerging antibiotic resistance in bacteria threatens immune efficacy and increases susceptibility to bone degradation and arthritic disorders. In our current study, we utilized a three-layer in-silico screening approach, employing quantum chemical methods, molecular docking, and molecular dynamic methods to explore the novel drug candidates similar in structure to floroquinolone (ciprofloxacin). We investigated the interaction of novel similar compounds of ciprofloxacin with both a bacterial protein S. aureus TyrRS (1JIJ) and a protein associated with gout arthritis Neutrophil collagenase (3DPE). UTIs and gout are interconnected through the elevation of uric acid levels. We aimed to identify compounds with dual functionality: antibacterial activity against UTIs and antirheumatic properties. Our screening based on several methods, sorted out six promising ligands. Four of these (L1, L2, L3, and L6) demonstrated favorable hydrogen bonding with both proteins and were selected for further analysis. These ligands showed binding affinities of -8.3 to -9.1 kcal/mol with both proteins, indicating strong interaction potential. Notably, L6 exhibited highest binding energies of -9.10 and -9.01 kcal/mol with S. aureus TyrRS and Neutrophil collagenase respectively. Additionally, the pkCSM online database conducted ADMET analysis on all lead ligand suggested that L6 might exhibit the highest intestinal absorption and justified total clearance rate. Moreover, L6 showed a best predicted inhibition constant with both proteins. The average RMSF values for all complex systems, namely L1, L2, L3 and L6 are 0.43 Å, 0.57 Å, 0.55 Å, and 0.51 Å, respectively where the ligand residues show maximum stability. The smaller energy gap of 3.85 eV between the HOMO and LUMO of the optimized molecule L1 and L6 suggests that these are biologically active compound. All the selected four drugs show considerable stabilization energy ranging from 44.78 to 103.87 kcal/mol, which means all four compounds are chemically and physically stable. Overall, this research opens exciting avenues for the development of new therapeutic agents with dual functionalities for antibacterial and antiarthritic drug designing.
Collapse
Affiliation(s)
- Shabbir Muhammad
- Central labs, King Khalid University, AlQura'a, P. O. Box 906, Abha, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia.
| | - Amina Faiz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Shafiq Ur Rehman
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 9088, Abha 61413, Saudi Arabia
| |
Collapse
|
4
|
Benjamin I, Louis H, O. Ekpen F, Gber TE, Gideon ME, Ahmad I, Unimuke TO, P. Akanimo N, Patel H, Eko IJ, Simon O, Agwamba EC, Ejiofor EU. Modeling the anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Activity of (E)-6-chloro-N 2-phenyl-N 4-(4-Phenyl-5-(Phenyl Diazinyl)-2λ 3, 3 λ 2- Thiazol-2-yl)-1, 3, 5-Triazine-2,4- Diamine. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2160773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Francis O. Ekpen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Mathias E. Gideon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel; Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Nyong P. Akanimo
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel; Institute of Pharmaceutical Education and Research, Shirpur, India
| | | | - Ojima Simon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Ernest C. Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Emmanuel U. Ejiofor
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| |
Collapse
|