1
|
Ray A, Joshi JM, Sundaravadivelu PK, Raina K, Lenka N, Kaveeshwar V, Thummer RP. An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 17:1954-1974. [PMID: 34100193 DOI: 10.1007/s12015-021-10200-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Human induced Pluripotent Stem Cells (iPSCs) have enormous potential in understanding developmental biology, disease modeling, drug discovery, and regenerative medicine. The initial human iPSC studies used fibroblasts as a starting cell source to reprogram them; however, it has been identified to be a less appealing somatic cell source by numerous studies due to various reasons. One of the important criteria to achieve efficient reprogramming is determining an appropriate starting somatic cell type to induce pluripotency since the cellular source has a major influence on the reprogramming efficiency, kinetics, and quality of iPSCs. Therefore, numerous groups have explored various somatic cell sources to identify the promising sources for reprogramming into iPSCs with different reprogramming factor combinations. This review provides an overview of promising easily accessible somatic cell sources isolated in non-invasive or minimally invasive manner such as keratinocytes, urine cells, and peripheral blood mononuclear cells used for the generation of human iPSCs derived from healthy and diseased subjects. Notably, iPSCs generated from one of these cell types derived from the patient will offer ethical and clinical advantages. In addition, these promising somatic cell sources have the potential to efficiently generate bona fide iPSCs with improved reprogramming efficiency and faster kinetics. This knowledge will help in establishing strategies for safe and efficient reprogramming and the generation of patient-specific iPSCs from these cell types.
Collapse
Affiliation(s)
- Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Ganeshkhind, Maharashtra, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Induced Pluripotent Stem Cells in Dental and Nondental Tissue Regeneration: A Review of an Unexploited Potential. Stem Cells Int 2020; 2020:1941629. [PMID: 32300365 PMCID: PMC7146092 DOI: 10.1155/2020/1941629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies currently represent the state of art for tissue regenerative treatment approaches for various diseases and disorders. Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells, using vectors carrying definite transcription factors, have manifested a breakthrough in regenerative medicine, relying on their pluripotent nature and ease of generation in large amounts from various dental and nondental tissues. In addition to their potential applications in regenerative medicine and dentistry, iPSCs can also be used in disease modeling and drug testing for personalized medicine. The current review discusses various techniques for the production of iPSC-derived osteogenic and odontogenic progenitors, the therapeutic applications of iPSCs, and their regenerative potential in vivo and in vitro. Through the present review, we aim to explore the potential applications of iPSCs in dental and nondental tissue regeneration and to highlight different protocols used for the generation of different tissues and cell lines from iPSCs.
Collapse
|
3
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
4
|
Romanazzo S, Nemec S, Roohani I. iPSC Bioprinting: Where are We at? MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2453. [PMID: 31374871 PMCID: PMC6696162 DOI: 10.3390/ma12152453] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022]
Abstract
Here, we present a concise review of current 3D bioprinting technologies applied to induced pluripotent stem cells (iPSC). iPSC have recently received a great deal of attention from the scientific and clinical communities for their unique properties, which include abundant adult cell sources, ability to indefinitely self-renew and differentiate into any tissue of the body. Bioprinting of iPSC and iPSC derived cells combined with natural or synthetic biomaterials to fabricate tissue mimicked constructs, has emerged as a technology that might revolutionize regenerative medicine and patient-specific treatment. This review covers the advantages and disadvantages of bioprinting techniques, influence of bioprinting parameters and printing condition on cell viability, and commonly used iPSC sources, and bioinks. A clear distinction is made for bioprinting techniques used for iPSC at their undifferentiated stage or when used as adult stem cells or terminally differentiated cells. This review presents state of the art data obtained from major searching engines, including Pubmed/MEDLINE, Google Scholar, and Scopus, concerning iPSC generation, undifferentiated iPSC, iPSC bioprinting, bioprinting techniques, cartilage, bone, heart, neural tissue, skin, and hepatic tissue cells derived from iPSC.
Collapse
Affiliation(s)
- Sara Romanazzo
- Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, New South Wales 2052, Australia
| | - Stephanie Nemec
- School of Materials Science and Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Iman Roohani
- Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|
5
|
Fliefel R, Ehrenfeld M, Otto S. Induced pluripotent stem cells (iPSCs) as a new source of bone in reconstructive surgery: A systematic review and meta-analysis of preclinical studies. J Tissue Eng Regen Med 2018; 12:1780-1797. [DOI: 10.1002/term.2697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry; Alexandria University; Alexandria Egypt
| | - Michael Ehrenfeld
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
| |
Collapse
|
6
|
Pisal RV, Suchanek J, Siller R, Soukup T, Hrebikova H, Bezrouk A, Kunke D, Micuda S, Filip S, Sullivan G, Mokry J. Directed reprogramming of comprehensively characterized dental pulp stem cells extracted from natal tooth. Sci Rep 2018; 8:6168. [PMID: 29670257 PMCID: PMC5906561 DOI: 10.1038/s41598-018-24421-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to extensively characterise natal dental pulp stem cells (nDPSC) and assess their efficiency to generate human induced pluripotent stem cells (hiPSC). A number of distinguishing features prompted us to choose nDPSC over normal adult DPSC, in that they differed in cell surface marker expression and initial doubling time. In addition, nDPSC expressed 17 out of 52 pluripotency genes we analysed, and the level of expression was comparable to human embryonic stem cells (hESC). Ours is the first group to report comprehensive characterization of nDPSC followed by directed reprogramming to a pluripotent stem cell state. nDPSC yielded hiPSC colonies upon transduction with Sendai virus expressing the pluripotency transcription factors POU5F1, SOX2, c-MYC and KLF4. nDPSC had higher reprogramming efficiency compared to human fibroblasts. nDPSC derived hiPSCs closely resembled hESC in terms of their morphology, expression of pluripotency markers and gene expression profiles. Furthermore, nDPSC derived hiPSCs differentiated into the three germ layers when cultured as embryoid bodies (EB) and by directed differentiation. Based on our findings, nDPSC present a unique marker expression profile compared with adult DPSC and possess higher reprogramming efficiency as compared with dermal fibroblasts thus proving to be more amenable for reprogramming.
Collapse
Affiliation(s)
- Rishikaysh V Pisal
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Jakub Suchanek
- Department of Dentistry, Faculty Hospital in Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Richard Siller
- Norwegian Center for Stem Cell Research, University of Oslo, 0317, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Tomas Soukup
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Hana Hrebikova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Ales Bezrouk
- Department of Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - David Kunke
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Gareth Sullivan
- Norwegian Center for Stem Cell Research, University of Oslo, 0317, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.,Institute of Immunology, Oslo University Hospital-Rikshospitalet, PO Box 4950 Nydalen, Oslo, 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Blindern, 0317, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, 0424, Nydalen, Norway
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic.
| |
Collapse
|
7
|
Ebrahimi B. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions. J Mol Cell Cardiol 2017; 108:61-72. [PMID: 28502796 DOI: 10.1016/j.yjmcc.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 02/08/2023]
Abstract
Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|