1
|
Shayanfard AH, Salehi Z, Mashayekhi F, Zahiri Z. Modulation of Long Non-coding RNA FAS-AS1/FAS/Caspase3 Axis in Endometriosis: A Cross-sectional Study. J Hum Reprod Sci 2024; 17:246-254. [PMID: 39831096 PMCID: PMC11741121 DOI: 10.4103/jhrs.jhrs_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 01/22/2025] Open
Abstract
Background An increasing number of studies have demonstrated that excessive proliferation and apoptosis play a pivotal role in the development of endometriosis. Aim The aim of the study was to evaluate the expression of long non-coding RNA (lncRNA) FAS-AS1, FAS, soluble Fas (sFas) and caspase-3 in patients with different stages of endometriosis. Setting and Design The design of the study was a cross-sectional study. Materials and Methods The relative expression of lncRNA FAS-AS1 and FAs gene was evaluated by the quantitative real-time polymerase chain reaction in 60 ectopic endometrial samples from women with endometriosis in relation to 85 normal endometrial tissues from healthy women, whereas the protein level of sFAs in the peritoneal fluid samples and cleaved caspase-3 in ectopic and normal endometrial tissue samples were determined using the enzyme-linked immunosorbent assay and western blot, respectively. Furthermore, in silico analyses were performed to investigate protein-protein interactions as well as molecular function and cellular location of selected proteins. Statistical Analysis Used The student's t-test was used to analyse the difference between the means of the two groups. Results The expression of FAS and sFas increased in endometriosis tissues as compared to the control group (P < 0.05). However, lncRNA FAS-AS1 and cleaved caspase-3 decreased in ectopic endometrial tissues compared to normal endometrial tissues and low lncRNA FAS-AS1 expression was correlated with disease stages. In addition, the in silico analysis revealed the importance of FAS/caspase3 in the biological processes involved in the development of endometriosis. Conclusion The current study suggests that lncRNA FAS-AS1 may function as an ectopic endometriotic suppressor. Moreover, the results showed that severity of endometriosis is also closely correlated with the expression of lncRNA FAS-AS1 and sFAS.
Collapse
Affiliation(s)
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Ziba Zahiri
- Department of Obstetrics and Gynaecology, Reproductive Health Research Centre, Alzahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Tsikouras P, Kritsotaki N, Nikolettos K, Kotanidou S, Oikonomou E, Bothou A, Andreou S, Nalmpanti T, Chalkia K, Spanakis V, Tsikouras N, Chalil M, Machairiotis N, Iatrakis G, Nikolettos N. The Impact of Adenomyosis on Pregnancy. Biomedicines 2024; 12:1925. [PMID: 39200389 PMCID: PMC11351718 DOI: 10.3390/biomedicines12081925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Adenomyosis is characterized by ectopic proliferation of endometrial tissue within the myometrium. Histologically, this condition is marked by the presence of islands of benign endometrial glands surrounded by stromal cells. The myometrium appears thinner, and cross-sectional analysis often reveals signs of recent or chronic hemorrhage. The ectopic endometrial tissue may respond to ovarian hormonal stimulation, exhibiting proliferative or secretory changes during the menstrual cycle, potentially leading to bleeding, uterine swelling, and pain. Adenomyosis can appear as either a diffuse or focal condition. It is crucial to understand that adenomyosis involves the infiltration of the endometrium into the myometrium, rather than its displacement. The surgical management of adenomyosis is contingent upon its anatomical extent. The high incidence of the disease and the myths that develop around it increase the need to study its characteristics and its association with pregnancy and potential obstetric complications. These complications often require quick decisions, appropriate diagnosis, and proper counseling. Therefore, knowing the possible risks associated with adenomyosis is key to decision making. Pregnancy has a positive effect on adenomyosis and its painful symptoms. This improvement is not only due to the inhibition of ovulation, which inhibits the bleeding of adenomyotic tissue, but also to the metabolic, hormonal, immunological, and angiogenic changes associated with pregnancy. Adenomyosis affects pregnancy through disturbances of the endocrine system and the body's immune response at both local and systemic levels. It leads to bleeding from the adenomyotic tissue, molecular and functional abnormalities of the ectopic endometrium, abnormal placentation, and destruction of the adenomyotic tissue due to changes in the hormonal environment that characterizes pregnancy. Some of the obstetric complications that occur in women with adenomyosis in pregnancy include miscarriage, preterm delivery, placenta previa, low birth weight for gestational age, obstetric hemorrhage, and the need for cesarean section. These complications are an understudied field and remain unknown to the majority of obstetricians. These pathological conditions pose challenges to both the typical progression of pregnancy and the smooth conduct of labor in affected women. Further multicenter studies are imperative to validate the most suitable method for concluding labor following surgical intervention for adenomyosis.
Collapse
Affiliation(s)
- Panagiotis Tsikouras
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Nektaria Kritsotaki
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Konstantinos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Sonia Kotanidou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Efthymios Oikonomou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Anastasia Bothou
- Department of Midwifery, School of Health Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; (A.B.); (G.I.)
| | - Sotiris Andreou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Theopi Nalmpanti
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Kyriaki Chalkia
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Vlasios Spanakis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Nikolaos Tsikouras
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Melda Chalil
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece;
| | - George Iatrakis
- Department of Midwifery, School of Health Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; (A.B.); (G.I.)
| | - Nikolaos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (K.N.); (S.K.); (E.O.); (S.A.); (T.N.); (K.C.); (V.S.); (N.T.); (M.C.); (N.N.)
| |
Collapse
|
3
|
Samare-Najaf M, Razavinasab SA, Samareh A, Jamali N. Omics-based novel strategies in the diagnosis of endometriosis. Crit Rev Clin Lab Sci 2024; 61:205-225. [PMID: 37878077 DOI: 10.1080/10408363.2023.2270736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Endometriosis, an enigmatic and chronic disorder, is considered a debilitating condition despite being benign. Globally, this gynecologic disorder affects up to 10% of females of reproductive age, impacting almost 190 million individuals. A variety of genetic and environmental factors are involved in endometriosis development, hence the pathophysiology and etiology of endometriosis remain unclear. The uncertainty of the etiology of the disease and its complexity along with nonspecific symptoms have led to misdiagnosis or lack of diagnosis of affected people. Biopsy and laparoscopy are referred to as the gold standard for endometriosis diagnosis. However, the invasiveness of the procedure, the unnecessary operation in disease-free women, and the dependence of the reliability of diagnosis on experience in this area are considered the most significant limitations. Therefore, continuous studies have attempted to offer a noninvasive and reliable approach. The recent advances in modern technologies have led to the generation of large-scale biological data sets, known as -omics data, resulting in the proceeding of the -omics century in biomedical sciences. Thereby, the present study critically reviews novel and noninvasive biomarkers that are based on -omics approaches from 2020 onward. The findings reveal that biomarkers identified based on genomics, epigenomics, transcriptomics, proteomics, and metabolomics are potentially able to diagnose endometriosis, predict prognosis, and stage patients, and potentially, in the near future, a multi-panel of these biomarkers will generate clinical benefits.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
4
|
Giudice LC, Oskotsky TT, Falako S, Opoku‐Anane J, Sirota M. Endometriosis in the era of precision medicine and impact on sexual and reproductive health across the lifespan and in diverse populations. FASEB J 2023; 37:e23130. [PMID: 37641572 PMCID: PMC10503213 DOI: 10.1096/fj.202300907] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Endometriosis is a common estrogen-dependent disorder wherein uterine lining tissue (endometrium) is found mainly in the pelvis where it causes inflammation, chronic pelvic pain, pain with intercourse and menses, and infertility. Recent evidence also supports a systemic inflammatory component that underlies associated co-morbidities, e.g., migraines and cardiovascular and autoimmune diseases. Genetics and environment contribute significantly to disease risk, and with the explosion of omics technologies, underlying mechanisms of symptoms are increasingly being elucidated, although novel and effective therapeutics for pain and infertility have lagged behind these advances. Moreover, there are stark disparities in diagnosis, access to care, and treatment among persons of color and transgender/nonbinary identity, socioeconomically disadvantaged populations, and adolescents, and a disturbing low awareness among health care providers, policymakers, and the lay public about endometriosis, which, if left undiagnosed and under-treated can lead to significant fibrosis, infertility, depression, and markedly diminished quality of life. This review summarizes endometriosis epidemiology, compelling evidence for its pathogenesis, mechanisms underlying its pathophysiology in the age of precision medicine, recent biomarker discovery, novel therapeutic approaches, and issues around reproductive justice for marginalized populations with this disorder spanning the past 100 years. As we enter the next revolution in health care and biomedical research, with rich molecular and clinical datasets, single-cell omics, and population-level data, endometriosis is well positioned to benefit from data-driven research leveraging computational and artificial intelligence approaches integrating data and predicting disease risk, diagnosis, response to medical and surgical therapies, and prognosis for recurrence.
Collapse
Affiliation(s)
- Linda C. Giudice
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Tomiko T. Oskotsky
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Bakar Computational Health Sciences InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Simileoluwa Falako
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Columbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Jessica Opoku‐Anane
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Division of Gynecologic Specialty SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Marina Sirota
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Bakar Computational Health Sciences InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Koninckx PR, Ussia A, Gordts S, Keckstein J, Saridogan E, Malzoni M, Stepanian A, Setubal A, Adamyan L, Wattiez A. The 10 "Cardinal Sins" in the Clinical Diagnosis and Treatment of Endometriosis: A Bayesian Approach. J Clin Med 2023; 12:4547. [PMID: 37445589 DOI: 10.3390/jcm12134547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Evidence-based data for endometriosis management are limited. Experiments are excluded without adequate animal models. Data are limited to symptomatic women and occasional observations. Hormonal medical therapy cannot be blinded if recognised by the patient. Randomised controlled trials are not realistic for surgery, since endometriosis is a variable disease with low numbers. Each diagnosis and treatment is an experiment with an outcome, and experience is the means by which Bayesian updating, according to the past, takes place. If the experiences of many are similar, this holds more value than an opinion. The combined experience of a group of endometriosis surgeons was used to discuss problems in managing endometriosis. Considering endometriosis as several genetically/epigenetically different diseases is important for medical therapy. Imaging cannot exclude endometriosis, and diagnostic accuracy is limited for superficial lesions, deep lesions, and cystic corpora lutea. Surgery should not be avoided for emotional reasons. Shifting infertility treatment to IVF without considering fertility surgery is questionable. The concept of complete excision should be reconsidered. Surgeons should introduce quality control, and teaching should move to explain why this occurs. The perception of information has a personal bias. These are the major problems involved in managing endometriosis, as identified by the combined experience of the authors, who are endometriosis surgeons.
Collapse
Affiliation(s)
- Philippe R Koninckx
- Department of OBGYN, Faculty of Medicine, Katholieke University Leuven, 3000 Leuven, Belgium
- Department of OBGYN, Faculty of Medicine, University of Oxford, Oxford OX1 2JD, UK
- Department of OBGYN, Faculty of Medicine, University Cattolica, del Sacro Cuore, 00168 Rome, Italy
- Department of OBGYN, Faculty of Medicine, Moscow State University, 119991 Moscow, Russia
- Latifa Hospital, Dubai 9115, United Arab Emirates
| | - Anastasia Ussia
- Department of OBGYN, Gemelli Hospitals, Università Cattolica, 00168 Rome, Italy
| | | | - Jörg Keckstein
- Endometriosis Centre, Dres. Keckstein, 9500 Villach, Austria
- Faculty of Medicine, University Ulm, 89081 Ulm, Germany
| | - Ertan Saridogan
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London SW7 2BX, UK
| | | | - Assia Stepanian
- Academia of Women's Health and Endoscopic Surgery, Atlanta, GA 30328, USA
| | - Antonio Setubal
- Department of Ob/Gyn and MIGS, Hospital da Luz Lisbon, 1500-650 Lisboa, Portugal
| | - Leila Adamyan
- Department of Operative Gynecology, Federal State Budget Institution V. I. Kulakov, Research Centre for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, 117198 Moscow, Russia
- Department of Reproductive Medicine and Surgery, Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Arnaud Wattiez
- Latifa Hospital, Dubai 9115, United Arab Emirates
- Department of Obstetrics and Gynaecology, University of Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
6
|
Abstract
Cardiovascular disease (CVD) is prevalent in patients with chronic kidney disease (CKD) and it is responsible for approximately half of all CKD-related deaths. CVDs are the primary cause of death in hemodialysis patients due to major adverse cardiovascular events. Therefore, better approaches for differentiating chronic hemodialysis patients at higher cardiovascular risk will help physicians improve clinical outcomes. Hence, there is an urgent need to discover feasible and reliable cardiac biomarkers to improve diagnostic accuracy, reflect myocardial injury, and identify high-risk patients. Numerous biomarkers that have significant prognostic value with respect to adverse CVD outcomes in the setting of mild to severe CKD have been identified. Therefore, a better understanding of the positive clinical impact of cardiac biomarkers on CVD patient outcomes is an important step toward prevention and improving treatment in the future. In this review, we address the relationship between cardiovascular biomarkers and CKD treatment strategies to elucidate the underlying importance of these biomarkers to patient outcomes.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tze-Kiong Er
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
7
|
Chen CC, Chou YC, Hsu CY, Tsai EM, Er TK. Transcriptome Profiling of Eutopic and Ectopic Endometrial Stromal Cells in Women with Endometriosis Based on High-Throughput Sequencing. Biomedicines 2022; 10:biomedicines10102432. [PMID: 36289693 PMCID: PMC9598494 DOI: 10.3390/biomedicines10102432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
Endometriosis is a common gynecological disease that affects approximately 5–10% of reproductive-aged women. However, the etiology and pathophysiology of endometriosis are currently unclear. The objective of this study was to identify a potential pathogenic gene of endometriosis using RNA sequencing (RNA-seq) analysis. Human endometrial stromal cells were isolated from four patients receiving surgical treatment for endometriosis during laparoscopic surgery, and RNA-seq was used to examine differentially expressed genes (DEGs) in eutopic and ectopic endometrial stromal cells. The functional significance of the differentially expressed genes was analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A total of 1309 upregulated and 663 downregulated genes were identified through the analysis of the transcriptomes of eutopic and ectopic endometrial stromal cells. Furthermore, KEGG analysis indicated that these DEGs were mainly enriched in the PI3K-Akt signaling pathway, cytokine–cytokine receptor interaction, and MAPK signaling pathway. Our study identified differential gene expression in eutopic as compared to ectopic endometrial tissue stromal cells. We strongly believe that our findings can bring new insights into the underlying mechanisms of endometriosis. However, future research is necessary to clarify the roles of the identified genes.
Collapse
Affiliation(s)
- Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yung-Che Chou
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung 413, Taiwan
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tze-Kiong Er
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung 413, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Qu M, Lu P, Bellve K, Lifshitz LM, ZhuGe R. Mode Switch of Ca 2 + Oscillation-Mediated Uterine Peristalsis and Associated Embryo Implantation Impairments in Mouse Adenomyosis. Front Physiol 2021; 12:744745. [PMID: 34803733 PMCID: PMC8599363 DOI: 10.3389/fphys.2021.744745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Adenomyosis is a debilitating gynecological disease of the uterus with no medicinal cure. The tissue injury and repair hypothesis for adenomyosis suggests that uterine hyperperistalsis or dysperistalsis plays a pivotal role in establishing adenomyotic lesions. However, specific impairments in uterine peristalsis and the underlying cellular signals for these changes in adenomyosis remain elusive. Here, we report a precision-cut uterine slice preparation that preserves in vivo uterine architecture and generates peristalsis similar to that seen in the whole uterus. We found that uterine peristalsis in neonatal mice at day 14 and adult mice at day 55 presents as bursts with multiple peaks induced by intracellular Ca2+ oscillations. Using a mouse model of adenomyosis induced by tamoxifen, a selective estrogen receptor modulator, we discovered that uterine peristalsis and Ca2+ oscillations from adenomyotic uteri on days 14 and 55 become spikes (single peaks) with smaller amplitudes. The peak frequency of Ca2+ oscillations or peristalsis does not show a difference between control and adenomyotic mice. However, both the estimated force generated by uterine peristalsis and the total Ca2+ raised by Ca2+ oscillations are smaller in uteri from adenomyotic mice. Uteri from adenomyotic mice on day 14, but not on day 55, exhibit hyperresponsiveness to oxytocin. Embryo implantations are decreased in adenomyotic adult mice. Our results reveal a mode switch from bursts to spikes (rather than an increased peak frequency) of uterine Ca2+ oscillations and peristalsis and concurrent hyperresponsiveness to oxytocin in the neonatal stage are two characteristics of adenomyosis. These characteristics may contribute to embryo implantation impairments and decreased fertility in adenomyosis.
Collapse
Affiliation(s)
- Mingzi Qu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
9
|
Sorokin M, Gorelyshev A, Efimov V, Zotova E, Zolotovskaia M, Rabushko E, Kuzmin D, Seryakov A, Kamashev D, Li X, Poddubskaya E, Suntsova M, Buzdin A. RNA Sequencing Data for FFPE Tumor Blocks Can Be Used for Robust Estimation of Tumor Mutation Burden in Individual Biosamples. Front Oncol 2021; 11:732644. [PMID: 34650919 PMCID: PMC8506044 DOI: 10.3389/fonc.2021.732644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023] Open
Abstract
Tumor mutation burden (TMB) is a well-known efficacy predictor for checkpoint inhibitor immunotherapies. Currently, TMB assessment relies on DNA sequencing data. Gene expression profiling by RNA sequencing (RNAseq) is another type of analysis that can inform clinical decision-making and including TMB estimation may strongly benefit this approach, especially for the formalin-fixed, paraffin-embedded (FFPE) tissue samples. Here, we for the first time compared TMB levels deduced from whole exome sequencing (WES) and RNAseq profiles of the same FFPE biosamples in single-sample mode. We took TCGA project data with mean sequencing depth 23 million gene-mapped reads (MGMRs) and found 0.46 (Pearson)–0.59 (Spearman) correlation with standard mutation calling pipelines. This was converted into low (<10) and high (>10) TMB per megabase classifier with area under the curve (AUC) 0.757, and application of machine learning increased AUC till 0.854. We then compared 73 experimental pairs of WES and RNAseq profiles with lower (mean 11 MGMRs) and higher (mean 68 MGMRs) RNA sequencing depths. For higher depth, we observed ~1 AUC for the high/low TMB classifier and 0.85 (Pearson)–0.95 (Spearman) correlation with standard mutation calling pipelines. For the lower depth, the AUC was below the high-quality threshold of 0.7. Thus, we conclude that using RNA sequencing of tumor materials from FFPE blocks with enough coverage can afford for high-quality discrimination of tumors with high and low TMB levels in a single-sample mode.
Collapse
Affiliation(s)
- Maxim Sorokin
- Biostatistics and Bioinformatics Subgroup, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium.,The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,OmicsWay Corp., Walnut, CA, United States
| | - Alexander Gorelyshev
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,OmicsWay Corp., Walnut, CA, United States
| | - Victor Efimov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgenia Zotova
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna Zolotovskaia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elizaveta Rabushko
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis Kuzmin
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Dmitry Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Xinmin Li
- Department of Pathology & Laboratory Medicine, University of California Los Angeles (UCLA) Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| | - Elena Poddubskaya
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Biostatistics and Bioinformatics Subgroup, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium.,Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,OmicsWay Corp., Walnut, CA, United States.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|