1
|
Darne P, Vidhate S, Shintre S, Wagdare S, Bhamare D, Mehta N, Rajagopalan V, Padmanabhan S. Advancements in Antiviral Therapy: Favipiravir Sodium in Nasal Formulation. AAPS PharmSciTech 2024; 25:273. [PMID: 39592539 DOI: 10.1208/s12249-024-02986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Favipiravir (FPV) is an Active Pharmaceutical Ingredient (API) known to have lower solubility in aqueous solvents. In the current study, efforts were made to generate a crystalline Favipiravir Sodium Salt (NaFPV) for enhanced solubility in aqueous media. The in-house generated NaFPV was characterized by NMR studies and its sodium content was determined by Flame Emission Spectroscopy (FES) as a confirmation of salt formation. Its solubility was determined where-in the solubility of NaFPV in water was about 100 times greater than FVP. FPV and NaFPV nasal spray formulations were prepared and its activity was determined against human coronavirus (hCoV) 229E strain. In the anti-hCoV assay as compared to FPV, NaFPV showed almost threefold higher anti-viral activity than its unmodified counterpart. Accelerated stability and spray pattern characteristics of both the formulations were studied. Interestingly, NaFPV showed higher physical stability during storage at conditions 40 ± 2 °C/ 75% ± 5% RH. The nasal spray formulations of both FPV and NaFPV showed ideal plume geometry and spray pattern of acceptable specifications. Due to its improvement in terms of solubility, NaFPV will have higher rate and extent of absorption, and faster onset of the therapeutic effect and may appear to be a feasible alternative to regular favipiravir for use in solid dosage forms.
Collapse
Affiliation(s)
- Priti Darne
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Shankar Vidhate
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Somesh Shintre
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Somnath Wagdare
- Analytical Development Laboratory Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Dhiraj Bhamare
- Analytical Development Laboratory Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Nisha Mehta
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Vishal Rajagopalan
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Sriram Padmanabhan
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India.
| |
Collapse
|
2
|
Shiraki K, Sato N, Sakai K, Matsumoto S, Kaszynski RH, Takemoto M. Antiviral therapy for COVID-19: Derivation of optimal strategy based on past antiviral and favipiravir experiences. Pharmacol Ther 2022; 235:108121. [PMID: 35121001 PMCID: PMC8806403 DOI: 10.1016/j.pharmthera.2022.108121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at significantly lower concentrations than the plasma trough levels achieved by the dosage adopted for influenza treatment and exhibits efficacy against coronavirus disease 2019 (COVID-19) pneumonia. Although high doses of favipiravir are required due to the molecule being a purine analog, its conversion into the active form in infected cells with active viral RNA synthesis enhances the antiviral specificity and selectivity as a chain terminator with lethal mutagenesis. Another characteristic feature is the lack of generation of favipiravir-resistant virus. COVID-19 pneumonia is caused by strong cell-mediated immunity against virus-infected cells, and the inflammatory response induced by adaptive immunity continues to peak for 3 to 5 days despite antiviral treatment. This has also been observed in herpes zoster (HZ) and cytomegalovirus (CMV) pneumonia. Inflammation due to an immune response may mask the effectiveness of favipiravir against COVID-19 pneumonia. Favipiravir significantly shortened the recovery time in patients with mild COVID-19 pneumonia by 3 days with the start of treatment by the 5th day of symptom onset. Since both CMV and COVID-19 pneumonia are caused by adaptive immunity and prevention of cytomegalovirus pneumonia is the standard treatment due to difficulties in treating refractory CMV pneumonia, COVID-19 pneumonia should be prevented with early treatment as well. In the present study, we have comprehensively reviewed the optimal antiviral therapy for COVID-19 based on clinical trials of favipiravir for the treatment of COVID-19 pneumonia and the concurrently established therapies for other viral infections, particularly HZ and CMV pneumonia. Optimally, antivirals should be administered immediately after COVID-19 diagnosis, similar to that after influenza diagnosis, to prevent COVID-19 pneumonia and complications resulting from microangiopathy.
Collapse
Affiliation(s)
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoru Sakai
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Richard H Kaszynski
- Stanford Solutions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masaya Takemoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| |
Collapse
|
3
|
Favipiravir Inhibits Hepatitis A Virus Infection in Human Hepatocytes. Int J Mol Sci 2022; 23:ijms23052631. [PMID: 35269774 PMCID: PMC8910232 DOI: 10.3390/ijms23052631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis A virus (HAV) is a causative agent of acute hepatitis and can occasionally induce acute liver failure. However, specific potent anti-HAV drug is not available on the market currently. Thus, we investigated several novel therapeutic drugs through a drug repositioning approach, targeting ribonucleic acid (RNA)-dependent RNA polymerase and RNA-dependent deoxyribonucleic acid polymerase. In the present study, we examined the anti-HAV activity of 18 drugs by measuring the HAV subgenomic replicon and HAV HA11-1299 genotype IIIA replication in human hepatoma cell lines, using a reporter assay and real-time reverse transcription polymerase chain reaction, respectively. Mutagenesis of the HAV 5’ untranslated region was also examined by next-generation sequencing. These specific parameters were explored because lethal mutagenesis has emerged as a novel potential therapeutic approach to treat RNA virus infections. Favipiravir inhibited HAV replication in both Huh7 and PLC/PRF/5 cells, although ribavirin inhibited HAV replication in only Huh7 cells. Next-generation sequencing demonstrated that favipiravir could introduce nucleotide mutations into the HAV genome more than ribavirin. In conclusion, favipiravir could introduce nucleotide mutations into the HAV genome and work as an antiviral against HAV infection. Provided that further in vivo experiments confirm its efficacy, favipiravir would be useful for the treatment of severe HAV infection.
Collapse
|
4
|
Uddin E, Islam R, Ashrafuzzaman, Bitu NA, Hossain MS, Islam AN, Asraf A, Hossen F, Mohapatra RK, Kudrat-E-Zahan M. Potential Drugs for the Treatment of COVID-19: Synthesis, Brief History and Application. Curr Drug Res Rev 2021; 13:184-202. [PMID: 34126913 DOI: 10.2174/2589977513666210611155426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
Coronaviruses (CoVs) belong to the Betacoronavirus group, an unusually large RNA genome characterized by club-like spikes that project from their surface. An outbreak of a novel coronavirus 2019 (nCOVID-19) already showed a unique replication strategy and infection that has posed significant threat to international health and the economy around the globe. Scientists around the world are investigating few previously used clinical drugs for the treatment of COVID-19. This review provides synthesis and mode of action of recently investigated drugs like Chloroquine, Hydroxychloroquine, Ivermectin, Selamectin, Remdesivir, Baricitinib, Darunavir, Favipiravir, Lopinavir/ ritonavir and Mefloquine hydrochloride that constitute an option for COVID-19 treatment.
Collapse
Affiliation(s)
- Ekhlass Uddin
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Raisul Islam
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Ashrafuzzaman
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Nur Amin Bitu
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md Saddam Hossain
- Department of Chemistry, Begum Rokeya University, Rangpur, Bangladesh
| | - Abm Nazmul Islam
- Chemistry Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Ali Asraf
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Faruk Hossen
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Md Kudrat-E-Zahan
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh
| |
Collapse
|
5
|
Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther 2020; 209:107512. [PMID: 32097670 PMCID: PMC7102570 DOI: 10.1016/j.pharmthera.2020.107512] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
Favipiravir has been developed as an anti-influenza drug and licensed as an anti-influenza drug in Japan. Additionally, favipiravir is being stockpiled for 2 million people as a countermeasure for novel influenza strains. This drug functions as a chain terminator at the site of incorporation of the viral RNA and reduces the viral load. Favipiravir cures all mice in a lethal influenza infection model, while oseltamivir fails to cure the animals. Thus, favipiravir contributes to curing animals with lethal infection. In addition to influenza, favipiravir has a broad spectrum of anti-RNA virus activities in vitro and efficacies in animal models with lethal RNA viruses and has been used for treatment of human infection with life-threatening Ebola virus, Lassa virus, rabies, and severe fever with thrombocytopenia syndrome. The best feature of favipiravir as an antiviral agent is the apparent lack of generation of favipiravir-resistant viruses. Favipiravir alone maintains its therapeutic efficacy from the first to the last patient in an influenza pandemic or an epidemic lethal RNA virus infection. Favipiravir is expected to be an important therapeutic agent for severe influenza, the next pandemic influenza strain, and other severe RNA virus infections for which standard treatments are not available.
Collapse
Affiliation(s)
- Kimiyasu Shiraki
- Senri Kinran University and Department of Virology, University of Toyama, Japan.
| | - Tohru Daikoku
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| |
Collapse
|
6
|
Lethal Mutagenesis of Rift Valley Fever Virus Induced by Favipiravir. Antimicrob Agents Chemother 2019; 63:AAC.00669-19. [PMID: 31085519 PMCID: PMC6658772 DOI: 10.1128/aac.00669-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging, mosquito-borne, zoonotic pathogen with recurrent outbreaks taking a considerable toll in human deaths in many African countries, for which no effective treatment is available. In cell culture studies and with laboratory animal models, the nucleoside analogue favipiravir (T-705) has demonstrated great potential for the treatment of several seasonal, chronic, and emerging RNA virus infections in humans, suggesting applicability to control some viral outbreaks. Rift Valley fever virus (RVFV) is an emerging, mosquito-borne, zoonotic pathogen with recurrent outbreaks taking a considerable toll in human deaths in many African countries, for which no effective treatment is available. In cell culture studies and with laboratory animal models, the nucleoside analogue favipiravir (T-705) has demonstrated great potential for the treatment of several seasonal, chronic, and emerging RNA virus infections in humans, suggesting applicability to control some viral outbreaks. Treatment with favipiravir was shown to reduce the infectivity of Rift Valley fever virus both in cell cultures and in experimental animal models, but the mechanism of this protective effect is not understood. In this work, we show that favipiravir at concentrations well below the toxicity threshold estimated for cells is able to extinguish RVFV from infected cell cultures. Nucleotide sequence analysis has documented RVFV mutagenesis associated with virus extinction, with a significant increase in G to A and C to U transition frequencies and a decrease of specific infectivity, hallmarks of lethal mutagenesis.
Collapse
|