1
|
Liu JW, Tsai YW, Lai CC, Tang HJ. Post-pandemic epidemiological trends of respiratory infectious diseases in Taiwan: A retrospective analysis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:233-240. [PMID: 39765452 DOI: 10.1016/j.jmii.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 03/18/2025]
Abstract
BACKGROUND This study analyzed the epidemiological trends of three significant respiratory infectious diseases in Taiwan: invasive pneumococcal disease (IPD), influenza with severe complications, and tuberculosis during post-COVID-19 pandemic period. METHODS We utilized data from Taiwan's Centers for Disease Control and Prevention (CDC) website and classified the COVID-19 prevention policies into three phases for the year 2021, 2022, and 2023. We then performed a statistical analysis of reported case numbers for the three respiratory diseases during the 3-year period using the Kruskal-Wallis test, followed by joinpoint regression model for the identification of seasonal distribution and variation. RESULTS An annual increase was observed in cases of IPD and influenza with severe complication, with influenza exhibiting a significant surge in 2023 (p < 0.001). IPD showed a non-significant upward trend (p = 0.111), while tuberculosis cases decreased annually (p = 0.114) with the gradual slowdown in the incidence rate reduction. Also, seasonal analysis revealed that IPD peaked in winter and spring, while influenza with severe complication peaked anomalously in the summer of 2023, suggestive of a prominent summer influenza. Finally, imported cases of influenza with severe complication, primarily from East and Southeast Asia, were noted only in 2023. CONCLUSIONS The relaxation of COVID-19 preventive measures in Taiwan led to a marked resurgence of respiratory infectious diseases, particularly influenza with severe complication, accompanied by anomalous seasonality in 2023. This study highlights the need for continued vigilance and appropriate public health strategies, including vaccination and non-pharmaceutical interventions, to manage respiratory infectious diseases in the post-pandemic era.
Collapse
Affiliation(s)
- Jin-Wei Liu
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ya-Wen Tsai
- Division of Preventive Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
2
|
Liu KH, Xiao YX, Jou R. Multidrug-resistant tuberculosis clusters and transmission in Taiwan: a population-based cohort study. Front Microbiol 2024; 15:1439532. [PMID: 39360329 PMCID: PMC11445003 DOI: 10.3389/fmicb.2024.1439532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Multidrug-resistant tuberculosis (MDR-TB) remains a challenge in the TB program of Taiwan, where 0.5% of new cases and 2.1% of previously treated cases were resistant to at least rifampin (RIF) and isoniazid (INH). Since >80% of our MDR-TB are new cases, genotyping of MDR Mycobacterium tuberculosis is implemented to facilitate contact investigation, cluster identification, and outbreak delineation. Methods This is a population-based retrospective cohort study analyzing MDR-TB cases from 2019 to 2022. Whole genome sequencing (WGS) was performed using the Illumina MiSeq and analyzed using the TB Profiler. A single nucleotide polymorphism (SNP) threshold of ≤ 12 and phylogenetic methods were used to identify putative transmission clusters. An outbreak was confirmed using genomic data and epidemiologic links. Results Of the 297 MDR-TB cases, 246 (82.8%), 45 (15.2%), and 6 (2.0%) were simple MDR, extensively drug-resistant tuberculosis (pre-XDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), respectively. The sublineage 2.2 modern Beijing was the predominant (48.8%) MDR-TB strain in Taiwan. Phylogenetic analysis identified 25.3% isolates in 20 clusters, with cluster sizes ranging from 2 to 13 isolates. Nevertheless, only 2 clusters, one household and one community, were confirmed as outbreaks. In this study, we found that males had a higher risk of MDR-TB transmission compared to females, and those infected with the sublineage 2.1-proto-Beijing genotype isolates were at a higher risk of transmission. Furthermore, 161 (54.2%) isolates harbored compensatory mutations in the rpoC and non-rifampicin resistant determinant region (non-RRDR) of the rpoB gene. MDR-TB strains containing rpoB S450L and other compensatory mutations concurrently were significantly associated with clusters, especially the proto-Beijing genotype strains with the compensatory mutation rpoC E750D or the modern Beijing genotype strains with rpoC D485Y/rpoC E1140D. Discussion Routine and continuous surveillance using WGS-based analysis is recommended to warn of risks and delineate transmission clusters of MDR-TB. We proposed the use of compensatory mutations as epidemiological markers of M. tuberculosis to interrupt putative MDR-TB transmission.
Collapse
Affiliation(s)
- Kuang-Hung Liu
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Xin Xiao
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
3
|
Lin CJ, Hsia NY, Hwang DK, Hwang YS, Chang YC, Hsu YR, Yeh PT, Lin CP, Hsu AY, Ho MW, Sheu SJ. Diagnosis and Treatment of Tubercular Uveitis in Taiwan - Consensus of Expert Panels. Ocul Immunol Inflamm 2024; 32:1420-1426. [PMID: 37186887 DOI: 10.1080/09273948.2023.2208660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
There is currently a lack of guidelines with regard to tubercular uveitis (TBU) management in Taiwan. We therefore propose an evidence-based consensus on the management for TBU. The Taiwan Ocular Inflammation Society conducted a meeting that included nine ophthalmologist and one infection disease expert that focused on three broad areas of (1) nomenclature for TBU, (2) assessment and diagnosis for TBU, and (3) treatment of TBU. Brief literature review on TBU diagnosis and management was conducted that informed this panel meeting in order to make decisions on each consensus statements. In terms of our results, a consensus statements and recommendations for the diagnosis and management of TBU were developed. This consensus statement provides an algorithmic approach toward diagnosing and managing TBU. These statements are meant to enhance but not replace individual clinician-patient interactions and to facilitate real-world clinical practice improvement in terms of TBU patients care.
Collapse
Affiliation(s)
- Chun-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Ning-Yi Hsia
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Ray Hsu
- Department of Ophthalmology, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Ping Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Alan Y Hsu
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Ophthalomology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Huang CK, Yu MC, Hung CS, Lin JC. Emerging insight of whole genome sequencing coupled with protein structure prediction into the pyrazinamide-resistance signature of Mycobacterium tuberculosis. Int J Antimicrob Agents 2024; 63:107053. [PMID: 38081550 DOI: 10.1016/j.ijantimicag.2023.107053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 11/11/2023] [Accepted: 12/04/2023] [Indexed: 02/25/2024]
Abstract
Pyrazinamide (PZA) is considered to be a pivotal drug to shorten the treatment of both drug-susceptible and drug-resistant tuberculosis, but its use is challenged by the reliability of drug-susceptibility testing (DST). PZA resistance in Mycobacterium tuberculosis (MTB) is relevant to the amino acid substitution of pyrazinamidase that is responsible for the conversion of PZA to active pyrazinoic acid (POA). The single nucleotide variants (SNVs) within ribosomal protein S1 (rpsA) or aspartate decarboxylase (panD), the binding targets of POA, has been reported to drive the PZA-resistance signature of MTB. In this study, whole genome sequencing (WGS) was used to identify SNVs within the pncA, rpsA and panD genes in 100 clinical MTB isolates associated with DST results for PZA. The potential influence of high-confidence, interim-confidence or emerging variants on the interplay between target genes and PZA or POA was simulated computationally, and predicted with a protein structure modelling approach. The DST results showed weak agreement with the identification of high-confidence variants within the pncA gene (Cohen's kappa coefficient=0.58), the analytic results of WGS coupled with protein structure modelling on pncA mutants (Cohen's kappa coefficient=0.524) or related genes (Cohen's kappa coefficient=0.504). Taken together, these results suggest the practicable application of a genotypic-coupled bioinformatic approach to manage PZA-containing regimens for patients with MTB.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Centre, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Centre, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Huang HT, Lin WH, Chan TH, Jou R. Genetic surveillance and outcomes of pyrazinamide and fluoroquinolones-resistant tuberculosis in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1236-1244. [PMID: 37690869 DOI: 10.1016/j.jmii.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Pyrazinamide (PZA) and fluoroquinolone (FQ), particularly moxifloxacin (MXF), are essential drugs in the World Health Organization (WHO) recommended short-course regimen to treat drug-susceptible tuberculosis (TB). METHODS To understand the extent of PZA and MXF susceptibility in general TB cases in Taiwan, we conducted retrospective analyses of 385 conservative Mycobacterium tuberculosis complex (MTBC) isolates identified from 4 TB laboratories in different regions of Taiwan. The case information was obtained from the TB registry. Genotypic drug susceptibility testing (DST) was performed by sequencing drug-resistance associated genes, PZA (pncA) and FQ (gyrA, and gyrB). Phenotypic DST was determined using the Bactec MGIT 960 system or the agar proportion method. Genotyping was carried out using spacer oligonucleotide typing. RESULTS In this study, 4.7% (18/385) cases' isolates harbored pncA mutations and 7.0% (27/385) cases' isolates harbored gyrA or gyrB mutation. Notably, pncA mutation was associated with Beijing family genotypes (P = 0.028), East African-Indian (EAI) genotypes (P = 0.047) and MDR-TB (P < 0.001). Whereas, gyrA or gyrB mutation was associated with EAI genotypes (P = 0.020) and MDR-TB (P = 0.006). In addition, a statistically significant difference was found between the favorable outcomes using active and inactive PZA (P = 0.009) in 38 case isolates with any pncA, gyrA, or gyrB mutation. CONCLUSION We concluded that routine PZA and FQ susceptibility tests are recommended for guiding the treatment of TB.
Collapse
Affiliation(s)
- Hsin-Ting Huang
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Wan-Hsuan Lin
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tai-Hua Chan
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| |
Collapse
|