1
|
Ramaker ME, Abdulrahim JW, Corey KM, Ramaker RC, Kwee LC, Kraus WE, Shah SH. Cardiovascular Disease Pathogenicity Predictor (CVD-PP): A Tissue-Specific In Silico Tool for Discriminating Pathogenicity of Variants of Unknown Significance in Cardiovascular Disease Genes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004464. [PMID: 39469763 DOI: 10.1161/circgen.123.004464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/05/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Interpretation of variants of uncertain significance (VUSs) remains a challenge in the care of patients with inherited cardiovascular diseases (CVDs); 56% of variants within CVD risk genes are VUS, and machine learning algorithms trained upon large data resources can stratify VUS into higher versus lower probability of contributing to a CVD phenotype. METHODS We used ClinVar pathogenic/likely pathogenic and benign/likely benign variants from 47 CVD genes to build a predictive model of variant pathogenicity utilizing measures of evolutionary constraint, deleteriousness, splicogenicity, local pathogenicity, cardiac-specific expression, and population allele frequency. Performance was validated using variants for which the ClinVar pathogenicity assignment changed. Functional validation was assessed using prior studies in >900 identified VUS. The model utility was demonstrated using the Catheterization Genetics (CATHGEN) cohort. RESULTS We identified a top-ranked model that accurately prioritized variants for which ClinVar clinical significance had changed (n=663; precision-recall area under the curve, 0.97) and performed well compared with conventional in silico methods. This model (CVD pathogenicity predictor [CVD-PP]) also had high accuracy in prioritizing VUS with functional effects in vivo (precision-recall area under the curve, 0.58). In CATHGEN, there was a greater burden of higher CVD-PP scored VUS in individuals with dilated cardiomyopathy compared with controls (P=8.2×10-15). Of individuals in CATHGEN who harbored highly ranked CVD pathogenicity predictor VUS meeting clinical pathogenicity criteria, 27.6% had clinical evidence of disease. Variant prioritization using this model increased genetic diagnosis in CATHGEN participants with a known clinical diagnosis of hypertrophic cardiomyopathy (7.8%-27.2%). CONCLUSIONS We present a cardiac-specific model for prioritizing variants underlying CVD syndromes with high performance in discriminating the pathogenicity of VUS in CVD genes. Variant review and phenotyping of individuals carrying VUS of pathogenic interest support the clinical utility of this model. This model could also have utility in filtering variants as part of large-scale genomic sequencing studies.
Collapse
Affiliation(s)
- Megan E Ramaker
- Duke Molecular Physiology Institute, Duke University, Durham, NC (M.E.R., J.W.A., K.M.C., L.C.K., W.E.K., S.H.S.)
- Duke Center for Precision Health, Duke Clinical and Translational Science Institute (M.E.R., L.C.K., S.H.S.)
| | - Jawan W Abdulrahim
- Duke Molecular Physiology Institute, Duke University, Durham, NC (M.E.R., J.W.A., K.M.C., L.C.K., W.E.K., S.H.S.)
| | - Kristin M Corey
- Duke Molecular Physiology Institute, Duke University, Durham, NC (M.E.R., J.W.A., K.M.C., L.C.K., W.E.K., S.H.S.)
| | - Ryne C Ramaker
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC (R.C.R.)
| | - Lydia Coulter Kwee
- Duke Molecular Physiology Institute, Duke University, Durham, NC (M.E.R., J.W.A., K.M.C., L.C.K., W.E.K., S.H.S.)
- Duke Center for Precision Health, Duke Clinical and Translational Science Institute (M.E.R., L.C.K., S.H.S.)
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC (M.E.R., J.W.A., K.M.C., L.C.K., W.E.K., S.H.S.)
- Division of Cardiology, Department of Medicine (W.E.K., S.H.S.)
| | - Svati H Shah
- Duke Molecular Physiology Institute, Duke University, Durham, NC (M.E.R., J.W.A., K.M.C., L.C.K., W.E.K., S.H.S.)
- Division of Cardiology, Department of Medicine (W.E.K., S.H.S.)
- Duke Center for Precision Health, Duke Clinical and Translational Science Institute (M.E.R., L.C.K., S.H.S.)
| |
Collapse
|
2
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
3
|
Gao Y, Peng L, Zhao C. MYH7 in cardiomyopathy and skeletal muscle myopathy. Mol Cell Biochem 2024; 479:393-417. [PMID: 37079208 DOI: 10.1007/s11010-023-04735-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lu Peng
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Salakhov RR, Golubenko MV, Valiakhmetov NR, Pavlyukova EN, Zarubin AA, Babushkina NP, Kucher AN, Sleptcov AA, Nazarenko MS. Application of Long-Read Nanopore Sequencing to the Search for Mutations in Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:15845. [PMID: 36555486 PMCID: PMC9779642 DOI: 10.3390/ijms232415845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence suggests that both coding and non-coding regions of sarcomeric protein genes can contribute to hypertrophic cardiomyopathy (HCM). Here, we introduce an experimental workflow (tested on four patients) for complete sequencing of the most common HCM genes (MYBPC3, MYH7, TPM1, TNNT2, and TNNI3) via long-range PCR, Oxford Nanopore Technology (ONT) sequencing, and bioinformatic analysis. We applied Illumina and Sanger sequencing to validate the results, FastQC, Qualimap, and MultiQC for quality evaluations, MiniMap2 to align data, Clair3 to call and phase variants, and Annovar's tools and CADD to assess pathogenicity of variants. We could not amplify the region encompassing exons 6-12 of MYBPC3. A higher sequencing error rate was observed with ONT (6.86-6.92%) than with Illumina technology (1.14-1.35%), mostly for small indels. Pathogenic variant p.Gln1233Ter and benign polymorphism p.Arg326Gln in MYBPC3 in a heterozygous state were found in one patient. We demonstrated the ability of ONT to phase single-nucleotide variants, enabling direct haplotype determination for genes TNNT2 and TPM1. These findings highlight the importance of long-range PCR efficiency, as well as lower accuracy of variant calling by ONT than by Illumina technology; these differences should be clarified prior to clinical application of the ONT method.
Collapse
Affiliation(s)
- Ramil R. Salakhov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Maria V. Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Nail R. Valiakhmetov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Elena N. Pavlyukova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Nadezhda P. Babushkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Aksana N. Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| |
Collapse
|
5
|
Kucher AN, Valiakhmetov NR, Salakhov RR, Golubenko MV, Pavlyukova EN, Nazarenko MS. Phenotype variation of hypertrophic cardiomyopathy in carriers of the p.Arg870His pathogenic variant in the MYH7 gene. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-205-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The review analyzes variability of clinical manifestations of p.Arg870His in the MYH7 gene, which is repeatedly registered in patients with hypertrophic cardiomyopathy (HCM). The analysis involves the data from scientific publications obtained as a search result in the PubMed, СlinVar, and eLibrary.ru databases, as well as authors’ own results. A wide range of phenotypic manifestations have been revealed in carriers of p.Arg870His, from the asymptomatic to severe course, rapid progression, and early death. The review considers possible factors that modify the effect of the pathogenic variant (i.e. dosage of the pathogenic variant, the presence of other unfavorable genetic variants, etc.). The importance of accumulating information on the clinical features of HCM in the carriers of specific gene variants is emphasized in order to clarify their pathogenicity and to identify factors modifying the clinical outcome, which is important for the choice of the treatment strategy for HCM.
Collapse
Affiliation(s)
- A. N. Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - N. R. Valiakhmetov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - R. R. Salakhov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; Siberian State Medical University
| | - M. V. Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - E. N. Pavlyukova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - M. S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; Siberian State Medical University
| |
Collapse
|
6
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
7
|
Antoniutti G, Caimi-Martinez FG, Álvarez-Rubio J, Morlanes-Gracia P, Pons-Llinares J, Rodríguez-Picón B, Fortuny-Frau E, Torres-Juan L, Heine-Suner D, Ripoll-Vera T. Genotype-Phenotype Correlation in Hypertrophic Cardiomyopathy: New Variant p.Arg652Lys in MYH7. Genes (Basel) 2022; 13:genes13020320. [PMID: 35205365 PMCID: PMC8872101 DOI: 10.3390/genes13020320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disease characterised by increased left ventricle (LV) wall thickness caused by mutations in sarcomeric genes. Finding a causal mutation can help to better assess the proband’s risk, as it allows the presence of the mutation to be evaluated in relatives and the follow-up to be focused on carriers. We performed an observational study of patients with HCM due to the novel p.Arg652Lys variant in the MYH7 gene. Eight families and 59 patients are described in the follow-up for a median of 63 months, among whom 39 (66%) carry the variant. Twenty-five (64%) of carriers developed HCM. A median maximum LV wall thickness of 16.5 mm was described. The LV hypertrophy was asymmetric septal in 75% of cases, with LV outflow tract obstruction in 28%. The incidence of a composite of serious adverse cardiovascular events (sudden death, aborted sudden death, appropriate implantable cardiac defibrillator discharge, an embolic event, or admission for heart failure) was observed in five (20%) patients. Given the finding of the p.Arg652Lys variant in patients with HCM, but not in controls, with evident segregation in patients with HCM from eight families and the location in an active site of the protein, we can define this variant as likely pathogenic and associated with the development of HCM.
Collapse
Affiliation(s)
- Guido Antoniutti
- Cardiology Department, Hospital Universitario Son Llàtzer, 07198 Palma de Mallorca, Spain; (G.A.); (F.G.C.-M.); (J.Á.-R.)
| | - Fiama Giuliana Caimi-Martinez
- Cardiology Department, Hospital Universitario Son Llàtzer, 07198 Palma de Mallorca, Spain; (G.A.); (F.G.C.-M.); (J.Á.-R.)
| | - Jorge Álvarez-Rubio
- Cardiology Department, Hospital Universitario Son Llàtzer, 07198 Palma de Mallorca, Spain; (G.A.); (F.G.C.-M.); (J.Á.-R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (J.P.-L.); (E.F.-F.); (L.T.-J.); (D.H.-S.)
| | - Paula Morlanes-Gracia
- Cardiology Department, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain;
| | - Jaume Pons-Llinares
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (J.P.-L.); (E.F.-F.); (L.T.-J.); (D.H.-S.)
- Cardiology Department, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | | | - Elena Fortuny-Frau
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (J.P.-L.); (E.F.-F.); (L.T.-J.); (D.H.-S.)
- Cardiology Department, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Laura Torres-Juan
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (J.P.-L.); (E.F.-F.); (L.T.-J.); (D.H.-S.)
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Damian Heine-Suner
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (J.P.-L.); (E.F.-F.); (L.T.-J.); (D.H.-S.)
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Tomas Ripoll-Vera
- Cardiology Department, Hospital Universitario Son Llàtzer, 07198 Palma de Mallorca, Spain; (G.A.); (F.G.C.-M.); (J.Á.-R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (J.P.-L.); (E.F.-F.); (L.T.-J.); (D.H.-S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
Oldt RF, Bussey KJ, Settles ML, Fass JN, Roberts JA, Reader JR, Komandoor S, Abrich VA, Kanthaswamy S. MYBPC3 Haplotype Linked to Hypertrophic Cardiomyopathy in Rhesus Macaques ( Macaca mulatta). Comp Med 2020; 70:358-367. [PMID: 32753092 PMCID: PMC7574221 DOI: 10.30802/aalas-cm-19-000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 11/05/2022]
Abstract
In humans, abnormal thickening of the left ventricle of the heart clinically defines hypertrophic cardiomyopathy (HCM), a common inherited cardiovascular disorder that can precede a sudden cardiac death event. The wide range of clinical presentations in HCM obscures genetic variants that may influence an individual's susceptibility to sudden cardiac death. Although exon sequencing of major sarcomere genes can be used to detect high-impact causal mutations, this strategy is successful in only half of patient cases. The incidence of left ventricular hypertrophy (LVH) in a managed research colony of rhesus macaques provides an excellent comparative model in which to explore the genomic etiology of severe HCM and sudden cardiac death. Because no rhesus HCM-associated mutations have been reported, we used a next-generation genotyping assay that targets 7 sarcomeric rhesus genes within 63 genomic sites that are orthologous to human genomic regions known to harbor HCM disease variants. Amplicon sequencing was performed on 52 macaques with confirmed LVH and 42 unrelated, unaffected animals representing both the Indian and Chinese rhesus macaque subspecies. Bias-reduced logistic regression uncovered a risk haplotype in the rhesus MYBPC3 gene, which is frequently disrupted in both human and feline HCM; this haplotype implicates an intronic variant strongly associated with disease in either homozygous or carrier form. Our results highlight that leveraging evolutionary genomic data provides a unique, practical strategy for minimizing population bias in complex disease studies.
Collapse
Affiliation(s)
- Robert F Oldt
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona;,
| | - Kimberly J Bussey
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; BEYOND Center for Fundamental Concepts in Science, Arizona State University at the West Campus, Glendale, Arizona
| | - Matthew L Settles
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Joseph N Fass
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Jeffrey A Roberts
- California National Primate Research Center, University of California, Davis, California
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, California
| | | | - Victor A Abrich
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona
| | - Sreetharan Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona; California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
9
|
Sudden Cardiac Death and Copy Number Variants: What Do We Know after 10 Years of Genetic Analysis? Forensic Sci Int Genet 2020; 47:102281. [PMID: 32248082 DOI: 10.1016/j.fsigen.2020.102281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Over the last ten years, analysis of copy number variants has increasingly been applied to the study of arrhythmogenic pathologies associated with sudden death, mainly due to significant advances in the field of massive genetic sequencing. Nevertheless, few published reports have focused on the prevalence of copy number variants associated with sudden cardiac death. As a result, the frequency of these genetic alterations in arrhythmogenic diseases as well as their genetic interpretation and clinical translation has not been established. This review summarizes the current available data concerning copy number variants in sudden cardiac death-related diseases.
Collapse
|
10
|
Gómez J, Lorca R, Reguero JR, Martín M, Morís C, Alonso B, Iglesias S, Díaz-Molina B, Avanzas P, Coto E. Genetic variation at the long noncoding RNA H19 gene is associated with the risk of hypertrophic cardiomyopathy. Epigenomics 2018; 10:865-873. [DOI: 10.2217/epi-2017-0175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: The long noncoding RNA H19 and its host micro RNA miR-675 have been found deregulated in cardiac hypertrophy and heart failure tissues. Our aim was to investigate whether the H19 gene variants were associated with the risk of hypertrophic cardiomyopathy (HCM). Patients & methods: We genotyped two H19 tag single nucleotide polymorphisms in 405 HCM patients and 550 controls, and sequenced this gene in 100 patients. Results: The rs2107425 C was significantly increased in sarcomere no-mutation patients (n = 225; p = 0.01): CC versus CT + TT, p = 0.017; odd ratios: 1.51. Sequencing of the H19 coding transcript identified two patients heterozygous carriers for a rare variant, rs945977096 G/A, that was absent among the controls. Conclusion: Our study suggested a significant association between H19 variants and the risk of developing HCM.
Collapse
Affiliation(s)
- Juan Gómez
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Rebeca Lorca
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Julián R Reguero
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - María Martín
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - César Morís
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Belén Alonso
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Sara Iglesias
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Beatriz Díaz-Molina
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Pablo Avanzas
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Eliecer Coto
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
11
|
Mademont-Soler I, Mates J, Yotti R, Espinosa MA, Pérez-Serra A, Fernandez-Avila AI, Coll M, Méndez I, Iglesias A, del Olmo B, Riuró H, Cuenca S, Allegue C, Campuzano O, Picó F, Ferrer-Costa C, Álvarez P, Castillo S, Garcia-Pavia P, Gonzalez-Lopez E, Padron-Barthe L, Díaz de Bustamante A, Darnaude MT, González-Hevia JI, Brugada J, Fernandez-Aviles F, Brugada R. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS One 2017; 12:e0181465. [PMID: 28771489 PMCID: PMC5542623 DOI: 10.1371/journal.pone.0181465] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited heart disease. Next-generation sequencing (NGS) is the preferred genetic test, but the diagnostic value of screening for minor and candidate genes, and the role of copy number variants (CNVs) deserves further evaluation. METHODS Three hundred and eighty-seven consecutive unrelated patients with HCM were screened for genetic variants in the 5 most frequent genes (MYBPC3, MYH7, TNNT2, TNNI3 and TPM1) using Sanger sequencing (N = 84) or NGS (N = 303). In the NGS cohort we analyzed 20 additional minor or candidate genes, and applied a proprietary bioinformatics algorithm for detecting CNVs. Additionally, the rate and classification of TTN variants in HCM were compared with 427 patients without structural heart disease. RESULTS The percentage of patients with pathogenic/likely pathogenic (P/LP) variants in the main genes was 33.3%, without significant differences between the Sanger sequencing and NGS cohorts. The screening for 20 additional genes revealed LP variants in ACTC1, MYL2, MYL3, TNNC1, GLA and PRKAG2 in 12 patients. This approach resulted in more inconclusive tests (36.0% vs. 9.6%, p<0.001), mostly due to variants of unknown significance (VUS) in TTN. The detection rate of rare variants in TTN was not significantly different to that found in the group of patients without structural heart disease. In the NGS cohort, 4 patients (1.3%) had pathogenic CNVs: 2 deletions in MYBPC3 and 2 deletions involving the complete coding region of PLN. CONCLUSIONS A small percentage of HCM cases without point mutations in the 5 main genes are explained by P/LP variants in minor or candidate genes and CNVs. Screening for variants in TTN in HCM patients drastically increases the number of inconclusive tests, and shows a rate of VUS that is similar to patients without structural heart disease, suggesting that this gene should not be analyzed for clinical purposes in HCM.
Collapse
Affiliation(s)
- Irene Mademont-Soler
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesus Mates
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Raquel Yotti
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Maria Angeles Espinosa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Alexandra Pérez-Serra
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Isabel Fernandez-Avila
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Monica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Irene Méndez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Bernat del Olmo
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Helena Riuró
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Sofía Cuenca
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Catarina Allegue
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Ferran Picó
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | | | | | | | - Pablo Garcia-Pavia
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Francisco de Vitoria University, Madrid, Spain
| | - Esther Gonzalez-Lopez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Francisco de Vitoria University, Madrid, Spain
| | - Laura Padron-Barthe
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Francisco de Vitoria University, Madrid, Spain
| | | | | | | | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Francisco Fernandez-Aviles
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Unit, Hospital Universitari Dr. Josep Trueta, Girona, Spain
| |
Collapse
|
12
|
Captur G, Karperien AL, Hughes AD, Francis DP, Moon JC. The fractal heart - embracing mathematics in the cardiology clinic. Nat Rev Cardiol 2016; 14:56-64. [PMID: 27708281 DOI: 10.1038/nrcardio.2016.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For clinicians grappling with quantifying the complex spatial and temporal patterns of cardiac structure and function (such as myocardial trabeculae, coronary microvascular anatomy, tissue perfusion, myocyte histology, electrical conduction, heart rate, and blood-pressure variability), fractal analysis is a powerful, but still underused, mathematical tool. In this Perspectives article, we explain some fundamental principles of fractal geometry and place it in a familiar medical setting. We summarize studies in the cardiovascular sciences in which fractal methods have successfully been used to investigate disease mechanisms, and suggest potential future clinical roles in cardiac imaging and time series measurements. We believe that clinical researchers can deploy innovative fractal solutions to common cardiac problems that might ultimately translate into advancements for patient care.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL Biological Mass Spectrometry Laboratory, Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; and the NIHR University College London Hospitals Biomedical Research Centre, Tottenham Court Road, London W1T 7DN, UK
| | - Audrey L Karperien
- Centre for Research in Complex Systems, School of Community Health, Charles Sturt University, Albury, NSW 2640, Australia
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK
| | - Darrel P Francis
- International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - James C Moon
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| |
Collapse
|
13
|
Gómez J, Reguero JR, Coto E. Luces y sombras en el diagnóstico genético de la miocardiopatía hipertrófica. Rev Esp Cardiol 2016. [DOI: 10.1016/j.recesp.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Gómez J, Reguero JR, Coto E. The Ups and Downs of Genetic Diagnosis of Hypertrophic Cardiomyopathy. ACTA ACUST UNITED AC 2015; 69:61-8. [PMID: 26654849 DOI: 10.1016/j.rec.2015.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 01/16/2023]
Abstract
Massive DNA sequencing, also known as next-generation sequencing, has revolutionized genetic diagnosis. This technology has reduced the effort and cost needed to analyze several genes simultaneously and has made genetic evaluation available to a larger number of patients. In hypertrophic cardiomyopathy, genetic analysis has increased from the 3 main genes implicated in the disease (MYH7, MYBPC3, TNNT2) to sequencing of more than 20 related genes. Despite the advantages of acquiring this additional information, many patients show variants of uncertain significance (mainly amino acid changes), which may also be present in at least 1 healthy control undergoing genome sequencing. This will be a dead-end situation unless the variant can be demonstrated to be associated with the disease in the patient's family. In the absence of clear evidence that these variants are truly pathogenic, they cannot be used for reliable genetic counselling in family members. Massive sequencing also enables identification of new candidate genes, but again, the problem of variants of uncertain significance limits the success of these assessments.
Collapse
Affiliation(s)
- Juan Gómez
- Genética Molecular-Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Julián R Reguero
- Cardiología-Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Eliecer Coto
- Genética Molecular-Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain.
| |
Collapse
|
15
|
Curila K, Benesova L, Tomasov P, Belsanova B, Widimsky P, Minarik M, Zemanek D, Veselka J, Gregor P. Variants in miRNA regulating cardiac growth are not a common cause of hypertrophic cardiomyopathy. Cardiology 2015; 130:137-42. [PMID: 25633875 DOI: 10.1159/000369247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES A substantial proportion of patients with hypertrophic cardiomyopathy (HCM) do not have causative mutations in the genes for heart sarcomere. The purpose of this study was to evaluate the association between microRNA (miRNA) sequence variants and HCM. METHODS We performed genetic testing on 56 HCM patients who had previously been found to be negative for mutations in the 4 major genes for sarcomeric proteins. The coding and adjacent regions (120-220 nt) of selected miRNAs were analyzed for the presence of sequence variants. The testing was based on PCR amplification of DNA-encoding miRNAs and subsequent denaturing capillary electrophoresis. RESULTS A total of 3 different variants were detected in the 11 selected miRNAs. These included polymorphisms rs45489294 in miRNA 208b, rs13136737 in miRNA 367 and rs9989532 in miRNA 1-2. In the patient group, the most frequent polymorphism was in miRNA 208b (10 times) followed by miRNA 367 (7 times). Both polymorphisms were found to occur with similar frequencies in the group of healthy controls. The remaining detected variant was not present in the control group, but was not connected with the HCM phenotype in the children of the probands. CONCLUSION Sequence variants in miRNAs of patients with HCM are not frequent and the contribution of these variants to the development of this disease was not demonstrated.
Collapse
Affiliation(s)
- Karol Curila
- Cardiocenter, Department of Cardiology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gómez J, Reguero JR, Morís C, Martín M, Alvarez V, Alonso B, Iglesias S, Coto E. Mutation analysis of the main hypertrophic cardiomyopathy genes using multiplex amplification and semiconductor next-generation sequencing. Circ J 2014; 78:2963-71. [PMID: 25342278 DOI: 10.1253/circj.cj-14-0628] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Mutations in at least 30 genes have been linked to hypertrophic cardiomyopathy (HCM). Due to the large size of the main HCM genes, Sanger sequencing is labor intensive and expensive. The purpose was to develop a next-generation sequencing (NGS) procedure for the main HCM genes. METHODS AND RESULTS: Multiplex amplification of the coding exons of MYH7,MYBPC3,TNNT2,TNNI3,ACTC1,TNNC1,MYL2,MYL3, and TPM1 was designated, followed by NGS with the Ion Torrent PGM (Life Technologies). A total of 8 pools containing DNA from HCM patients were sequenced in a 2-step approach. First, a total of 60 patients (validation cohort) underwent both PGM and Sanger sequencing for the 9 genes. No false-negative variants were found on NGS (100% sensitivity), and a specificity of 97% and 80% was achieved for single-nucleotide and insertion/deletion variants, respectively. Second, the PGM was used to search for mutations in a total of 76 cases not previously studied (discovery cohort). A total of 19 putative mutations were identified in the discovery pools, which were confirmed and assigned to specific patients on Sanger sequencing. CONCLUSIONS An NGS procedure has been developed for the main sarcomeric genes that would facilitate the screening of large cohorts of patients. In addition, this procedure would facilitate the uncovering of rare gene variants on a population scale.
Collapse
Affiliation(s)
- Juan Gómez
- Molecular Genetics Dept-Laboratory of Medicine-Renal Foundation (IRSIN-FRIAT), Hospital Central Asturias
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Exome sequencing identifies Laing distal myopathy MYH7 mutation in a Roma family previously diagnosed with distal neuronopathy. Neuromuscul Disord 2014; 24:156-61. [DOI: 10.1016/j.nmd.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022]
|
18
|
Reguero JR, Gómez J, Martín M, Flórez JP, Morís C, Iglesias S, Alonso B, Alvarez V, Coto E. The G263X MYBPC3 mutation is a common and low-penetrant mutation for hypertrophic cardiomyopathy in the region of Asturias (Northern Spain). Int J Cardiol 2013; 168:4555-6. [PMID: 23870641 DOI: 10.1016/j.ijcard.2013.06.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/09/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Julián R Reguero
- Cardiología-Fundación Asturcor, Hospital Universitario Central Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|