1
|
Canning J, Strawbridge RJ, Miedzybrodzka Z, Marioni RE, Melbye M, Porteous DJ, Hurles ME, Sattar N, Sudlow CLM, Collins R, Padmanabhan S, Pell JP. Methods applied to neonatal dried blood spot samples for secondary research purposes: a scoping review. Crit Rev Clin Lab Sci 2024; 61:685-708. [PMID: 38855982 DOI: 10.1080/10408363.2024.2360996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
This scoping review aimed to synthesize the analytical techniques used and methodological limitations encountered when undertaking secondary research using residual neonatal dried blood spot (DBS) samples. Studies that used residual neonatal DBS samples for secondary research (i.e. research not related to newborn screening for inherited genetic and metabolic disorders) were identified from six electronic databases: Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, Medline, PubMed and Scopus. Inclusion was restricted to studies published from 1973 and written in or translated into English that reported the storage, extraction and testing of neonatal DBS samples. Sixty-seven studies were eligible for inclusion. Included studies were predominantly methodological in nature and measured various analytes, including nucleic acids, proteins, metabolites, environmental pollutants, markers of prenatal substance use and medications. Neonatal DBS samples were stored over a range of temperatures (ambient temperature, cold storage or frozen) and durations (two weeks to 40.5 years), both of which impacted the recovery of some analytes, particularly amino acids, antibodies and environmental pollutants. The size of DBS sample used and potential contamination were also cited as methodological limitations. Residual neonatal DBS samples retained by newborn screening programs are a promising resource for secondary research purposes, with many studies reporting the successful measurement of analytes even from neonatal DBS samples stored for long periods of time in suboptimal temperatures and conditions.
Collapse
Affiliation(s)
- Jordan Canning
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Rona J Strawbridge
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Division of Cardiovascular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Zosia Miedzybrodzka
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen, UK
- Medical Genetics Group, School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Riccardo E Marioni
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mads Melbye
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Naveed Sattar
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Cathie L M Sudlow
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Health Data Research UK, London, UK
| | - Rory Collins
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sandosh Padmanabhan
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jill P Pell
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Rajabi F, Levy HL. Hyperphenylalaninemia and the genomic revolution. Mol Genet Metab 2015; 114:380-1. [PMID: 25549965 DOI: 10.1016/j.ymgme.2014.12.303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Farrah Rajabi
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Harvey L Levy
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Klassen TL, Bomben VC, Patel A, Drabek J, Chen TT, Gu W, Zhang F, Chapman K, Lupski JR, Noebels JL, Goldman AM. High-resolution molecular genomic autopsy reveals complex sudden unexpected death in epilepsy risk profile. Epilepsia 2013; 55:e6-12. [PMID: 24372310 DOI: 10.1111/epi.12489] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2013] [Indexed: 12/29/2022]
Abstract
Advanced variant detection in genes underlying risk of sudden unexpected death in epilepsy (SUDEP) can uncover extensive epistatic complexity and improve diagnostic accuracy of epilepsy-related mortality. However, the sensitivity and clinical utility of diagnostic panels based solely on established cardiac arrhythmia genes in the molecular autopsy of SUDEP is unknown. We applied the established clinical diagnostic panels, followed by sequencing and a high density copy number variant (CNV) detection array of an additional 253 related ion channel subunit genes to analyze the overall genomic variation in a SUDEP of the 3-year-old proband with severe myoclonic epilepsy of infancy (SMEI). We uncovered complex combinations of single nucleotide polymorphisms and CNVs in genes expressed in both neurocardiac and respiratory control pathways, including SCN1A, KCNA1, RYR3, and HTR2C. Our findings demonstrate the importance of comprehensive high-resolution variant analysis in the assessment of personally relevant SUDEP risk. In this case, the combination of de novo single nucleotide polymorphisms (SNPs) and CNVs in the SCN1A and KCNA1 genes, respectively, is suspected to be the principal risk factor for both epilepsy and premature death. However, consideration of the overall biologically relevant variant complexity with its extensive functional epistatic interactions reveals potential personal risk more accurately.
Collapse
Affiliation(s)
- Tara L Klassen
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Song Y, Fahs A, Feldman C, Shah S, Gu Y, Wang Y, Machado RF, Wunderink RG, Chen J. A reliable and effective method of DNA isolation from old human blood paper cards. SPRINGERPLUS 2013; 2:616. [PMID: 24307984 PMCID: PMC3847035 DOI: 10.1186/2193-1801-2-616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/07/2013] [Indexed: 11/10/2022]
Abstract
Blood paper cards provide an effective DNA storage method. In this study, we used three DNA dissolving reagents (Tris-EDTA [TE] buffer, Tris–HCl buffer, and water) and one common commercially available kit (DN131 from MRC Inc) to elute DNA from 105 human blood paper cards collected up to 10 years ago. These DNA samples were used as templates for amplification of a single nucleotide polymorphism (SNP, C125T) region of human caspase-12 by PCR and a specific Taqman genotyping assay using the same amount of DNA. We show that DNA isolated by Tris–HCl buffer has higher yield and quality in comparison to DN131 solution. PCR success rate to amplify caspase-12 C125T SNP using Tris–HCl is comparable to the method using DN131 (89.5% vs 87.6%). The Taqman genotyping success rate using Tris–HCl is higher than using DN131 (81.9% vs 70.5%). Using TE or water, PCR success rates are lower than using DN131 (73.3% [TE]; 72.4% [H2O]), but Taqman genotyping success rates are comparable to the method using DN131 (70.5% [TE]; 79.1% [H2O]). We concluded that using Tris–HCl is a reliable and effective method to elute DNA from old human blood paper cards. The crude DNA isolated by Tris–HCl can be used to study genetic polymorphisms in human populations.
Collapse
Affiliation(s)
- Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | | | | | | | | | | | | | | | | |
Collapse
|