1
|
Dang M, Wang S, Peng F, Zhang R, Jiao H, Zhang H, Dong H, Zhang H, Xing J, Guo X, Liu Y. Multiple features of cell-free mtDNA for predicting transarterial chemoembolization response in hepatocellular carcinoma. Hepatol Commun 2025; 9:e0652. [PMID: 40008902 PMCID: PMC11868427 DOI: 10.1097/hc9.0000000000000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/27/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) is the primary treatment modality for advanced HCC, yet its efficacy assessment and prognosis prediction largely depend on imaging and serological markers that possess inherent limitations in terms of real-time capability, sensitivity, and specificity. Here, we explored whether multiple features of cell-free mitochondrial DNA (cf-mtDNA), including copy number, mutations, and fragmentomics, could be used to predict the response and prognosis of patients with HCC undergoing TACE treatment. METHODS A total of 60 plasma cell-free DNA samples were collected from 30 patients with HCC before and after the first TACE treatment and then subjected to capture-based mtDNA sequencing and whole-genome sequencing. RESULTS Comprehensive analyses revealed a clear association between cf-mtDNA multiple features and tumor characteristics. Based on cf-mtDNA multiple features, we also developed HCC death and progression risk prediction models. Kaplan-Meier curve analyses revealed that the high-death risk or high-progression-risk group had significantly shorter median overall survival (OS) and progression-free survival than the low-death risk or low-progression-risk group (all p<0.05). Moreover, the change in cf-mtDNA multiple features before and after TACE treatment exhibited an exceptional ability to predict the risk of death and progression in patients with HCC (log-rank test, all p<0.01; HRs: 0.36 and 0.33, respectively). Furthermore, we observed the consistency of change between the cf-mtDNA multiple features and copy number variant burden before and after TACE treatment in 40.00% (12/30) patients with HCC. CONCLUSIONS Altogether, we developed a novel strategy based on profiling of cf-mtDNA multiple features for prognosis prediction and efficacy evaluation in patients with HCC undergoing TACE treatment.
Collapse
Affiliation(s)
- Miao Dang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Siyuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Runjiao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Huanmin Jiao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Haiying Dong
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Liu Y, Peng F, Wang S, Jiao H, Zhou K, Guo W, Guo S, Dang M, Zhang H, Zhou W, Guo X, Xing J. Aberrant fragmentomic features of circulating cell-free mitochondrial DNA enable early detection and prognosis prediction of hepatocellular carcinoma. Clin Mol Hepatol 2025; 31:196-212. [PMID: 39406379 PMCID: PMC11791606 DOI: 10.3350/cmh.2024.0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND/AIMS Early detection and effective prognosis prediction in patients with hepatocellular carcinoma (HCC) provide an avenue for survival improvement, yet more effective approaches are greatly needed. We sought to develop the detection and prognosis models with ultra-sensitivity and low cost based on fragmentomic features of circulating cell free mtDNA (ccf-mtDNA). METHODS Capture-based mtDNA sequencing was carried out in plasma cell-free DNA samples from 1168 participants, including 571 patients with HCC, 301 patients with chronic hepatitis B or liver cirrhosis (CHB/LC) and 296 healthy controls (HC). RESULTS The systematic analysis revealed significantly aberrant fragmentomic features of ccf-mtDNA in HCC group when compared with CHB/LC and HC groups. Moreover, we constructed a random forest algorithm-based HCC detection model by utilizing ccf-mtDNA fragmentomic features. Both internal and two external validation cohorts demonstrated the excellent capacity of our model in distinguishing early HCC patients from HC and highrisk population with CHB/LC, with AUC exceeding 0.983 and 0.981, sensitivity over 89.6% and 89.61%, and specificity over 98.20% and 95.00%, respectively, greatly surpassing the performance of alpha-fetoprotein (AFP) and mtDNA copy number. We also developed an HCC prognosis prediction model by LASSO-Cox regression to select 20 fragmentomic features, which exhibited exceptional ability in predicting 1-year, 2-year and 3-year survival (AUC=0.8333, 0.8145 and 0.7958 for validation cohort, respectively). CONCLUSION We have developed and validated a high-performing and low-cost approach in a large clinical cohort based on aberrant ccf-mtDNA fragmentomic features with promising clinical translational application for the early detection and prognosis prediction of HCC patients.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Siyuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Huanmin Jiao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Wenjie Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Shanshan Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Miao Dang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Weizheng Zhou
- Department of General Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
3
|
Wang S, Peng F, Dang M, Jiao H, Zhang H, Zhou K, Guo W, Gong Z, Guo L, Lu R, Li D, Liu B, Guo X, Xing J, Liu Y. Early detection of colorectal cancer using aberrant circulating cell-free mitochondrial DNA fragmentomics. Gut 2024:gutjnl-2024-333533. [PMID: 39694683 DOI: 10.1136/gutjnl-2024-333533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Early detection of colorectal cancer (CRC) is crucial for improving the survival rates of patients. OBJECTIVE We aimed to develop a novel strategy for early CRC detection using the fragmentomic features of circulating cell-free mitochondrial DNA (ccf-mtDNA). DESIGN Here, a total of 1147 participants, including 478 healthy controls (HCs), 112 patients with advanced adenomas (AAs) and 557 patients with CRC, were enrolled from five hospitals and plasma samples were collected for capture-based ccf-mtDNA sequencing. RESULTS Our data analysis revealed significantly aberrant ccf-mtDNA fragmentomic features in patients with CRC and AA when compared with HCs. Then, a CRC detection (CD) model was constructed based on the fragmentomic features of ccf-mtDNA from 246 patients with CRC and 168 HC in the training cohort, showing area under the curve of 0.9863, sensitivity of 92.68% and specificity of 93.45%. Both internal and two external validation cohorts demonstrated the excellent capacity of CD model in distinguishing patients with early-stage CRC from HCs, greatly surpassing the performance of serum biomarkers. Furthermore, our CD model can also detect patients with AA with a sensitivity of 79.35% in AA cohort 1 and 85.00% in AA cohort 2. CONCLUSION In conclusion, based on aberrant ccf-mtDNA fragmentomic features, a novel and non-invasive approach was established for the detection of patients with early-stage CRC or AA, with high performance.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Miao Dang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanmin Jiao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenjie Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhiyun Gong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Deliang Li
- Department of Gatroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bingrong Liu
- Department of Gatroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Liu Y, Peng F, Wang S, Jiao H, Dang M, Zhou K, Guo W, Guo S, Zhang H, Song W, Xing J. Aberrant fragmentomic features of circulating cell-free mitochondrial DNA as novel biomarkers for multi-cancer detection. EMBO Mol Med 2024; 16:3169-3183. [PMID: 39478151 PMCID: PMC11628560 DOI: 10.1038/s44321-024-00163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Fragmentomic features of circulating cell free mitochondrial DNA (ccf-mtDNA) including fragmentation profile, 5' end base preference and motif diversity are poorly understood. Here, we generated ccf-mtDNA sequencing data of 1607 plasma samples using capture-based next generation sequencing. We firstly found that fragmentomic features of ccf-mtDNA were remarkably different from those of circulating cell free nuclear DNA. Furthermore, region-specific fragmentomic features of ccf-mtDNA were observed, which was associated with protein binding, base composition and special structure of mitochondrial DNA. When comparing to non-cancer controls, six types of cancer patients exhibited aberrant fragmentomic features. Then, cancer detection models were built based on the fragmentomic features. Both internal and external validation cohorts demonstrated the excellent capacity of our model in distinguishing cancer patients from non-cancer control, with all area under curve higher than 0.9322. The overall accuracy of tissue-of-origin was 89.24% and 87.92% for six cancer types in two validation cohort, respectively. Altogether, our study comprehensively describes cancer-specific fragmentomic features of ccf-mtDNA and provides a proof-of-principle for the ccf-mtDNA fragmentomics-based multi-cancer detection and tissue-of-origin classification.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Siyuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanmin Jiao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Miao Dang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Zhou K, Wang Z, Guo W, Xie F, Yuan Q, Guo S, Zhang H, Liu Y, Gu X, Song W, Guo X, Xing J. Unraveling bidirectional evolution of unstable mitochondrial DNA mutations in hepatocellular carcinoma at single-cell resolution. Hepatology 2024:01515467-990000000-01049. [PMID: 39641629 DOI: 10.1097/hep.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND AIMS Somatic mutations in mitochondrial DNA (mtDNA) are abundant in HCC and directly affect metabolic homeostasis and tumor progression. The mixed population of mutant and wild-type mtDNA alleles within a cell, termed heteroplasmy, can vary from cell-to-cell and orchestrate tumorigenesis. However, the systematic evolutionary dynamics of somatic mtDNA mutations in HCC tissues remain to be delineated at single-cell resolution. APPROACH AND RESULTS We established the single-cell capture-based mtDNA sequencing approach for accurately detecting somatic mtDNA mutations at single-cell resolution. Based on single-cell capture-based mtDNA sequencing, the single-cell somatic mtDNA mutational landscape, intratumor heterogeneity (ITH), and spatiotemporal clonal evolution were systematically investigated in 1641 single cells from 11 patients with HCC and 528 single cells from 2 patient-derived xenografts mouse models. Our data revealed the presence of 2 distinct categories of mtDNA mutation at single-cell resolution, including stable mutations exhibiting similar heteroplasmy levels and unstable mutations exhibiting remarkable cell-to-cell variability of heteroplasmy levels. Furthermore, the proportion of unstable mtDNA mutations was positively associated with the ITH of patients with HCC, with high ITH reflecting the proliferative and aggressive clinicopathological features of HCC cells. In addition, reconstruction of the evolutionary history classified HCC evolution patterns as linear or branched. Notably, spatiotemporal lineage tracing in patient-derived xenograft mouse models and multifocal lesions revealed bidirectional evolution of unstable mtDNA mutations during HCC progression. CONCLUSIONS Our study unravels the landscape of single-cell somatic mtDNA mutations in HCC tissues and reveals the bidirectional evolution of unstable mtDNA mutations, with potential implications for HCC stratification and therapeutic intervention.
Collapse
Affiliation(s)
- Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Zhenni Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Fanfan Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qing Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Alwehaidah MS, Al-Awadhi R, Roomy MA, Baqer TA. Mitochondrial DNA copy number and risk of papillary thyroid carcinoma. BMC Endocr Disord 2024; 24:138. [PMID: 39090709 PMCID: PMC11295319 DOI: 10.1186/s12902-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) copy number is associated with tumor activity and carcinogenesis. This study was undertaken to investigate mtDNA copy number in papillary thyroid cancer (PTC) tissues and to evaluate the risk of PTC development. The clinicopathological features of patients and mtDNA copy number were correlated. The value of mtDNA copy number was evaluated as a biomarker for PTC. METHOD DNA was extracted from 105 PTC tissues and 67 control thyroid tissues, and mtDNA copy number mtDNA oxidative damage were determined using qPCR techniques. RESULTS Overall, the relative mtDNA copy number was significantly higher in PTC patients (p < 0.001). The risk of developing PTC increased significantly across the tertiles of mtDNA copy number (p trend < 0.001). The higher the mtDNA copy number tertile, the greater the risk of developing PTC. Patients with follicular variants had an odds ratio of 2.09 (95% CI: 1.78-2.44) compared to those with classical variants (p < 0.001). The level of mtDNA oxidative damage in PTC was significantly elevated compared to controls (p < 0.001). The ROC analysis of mtDNA copy number indicated an area under the curve (AUC) of 77.7% (95% CI: 0.71 to 0.85, p < 0.001) for the ability of mtDNA copy number z-scores in differentiate between PTC and controls. CONCLUSION Our results indicated that the augmentation of mtDNA content plays a significant role during the initiation of thyroid cancer, and it might represent a potential biomarker for predicting the risk of PTC.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah City, Kuwait.
| | - Rana Al-Awadhi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah City, Kuwait
| | - Moody Al Roomy
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah City, Kuwait
| | - Tahani Al Baqer
- Histopathology Laboratory, Cancer Control Center (KCCC), Sabah Health Area, Ministry of Health, Sulaibikhat City, Kuwait
| |
Collapse
|
7
|
Liang D, Zhu L, Zhu Y, Huang M, Lin Y, Li H, Hu P, Zhang J, Shen B, Xu Z. A PCR-independent approach for mtDNA enrichment and next-generation sequencing: comprehensive evaluation and clinical application. J Transl Med 2024; 22:386. [PMID: 38664838 PMCID: PMC11044483 DOI: 10.1186/s12967-024-05213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Sequencing the mitochondrial genome has been increasingly important for the investigation of primary mitochondrial diseases (PMD) and mitochondrial genetics. To overcome the limitations originating from PCR-based mtDNA enrichment, we set out to develop and evaluate a PCR-independent approach in this study, named Pime-Seq (PCR-independent mtDNA enrichment and next generation Sequencing). RESULTS By using the optimized mtDNA enrichment procedure, the mtDNA reads ratio reached 88.0 ± 7.9% in the sequencing library when applied on human PBMC samples. We found the variants called by Pime-Seq were highly consistent among technical repeats. To evaluate the accuracy and reliability of this method, we compared Pime-Seq with lrPCR based NGS by performing both methods simultaneously on 45 samples, yielding 1677 concordant variants, as well as 146 discordant variants with low-level heteroplasmic fraction, in which Pime-Seq showed higher reliability. Furthermore, we applied Pime-Seq on 4 samples of PMD patients retrospectively, and successfully detected all the pathogenic mtDNA variants. In addition, we performed a prospective study on 192 apparently healthy pregnant women during prenatal screening, in which Pime-Seq identified pathogenic mtDNA variants in 4 samples, providing extra information for better health monitoring in these cases. CONCLUSIONS Pime-Seq can obtain highly enriched mtDNA in a PCR-independent manner for high quality and reliable mtDNA deep-sequencing, which provides us an effective and promising tool for detecting mtDNA variants for both clinical and research purposes.
Collapse
Affiliation(s)
- Dong Liang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Yuqing Zhu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Mingtao Huang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Ying Lin
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Hang Li
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| |
Collapse
|
8
|
Chen D, Yan Z, Yuan Q, Xie F, Liu Y, Feng Z, Wang Z, Zhou F, Xing J, Zhang Z, Wang F, Guo X. Mitochondrial DNA Haplogroups and SNPs: Risk Factors in Multiple Cancers Based on a Cross-Tumor Analysis in Chinese Population. Cancer Epidemiol Biomarkers Prev 2024; 33:381-388. [PMID: 38214580 DOI: 10.1158/1055-9965.epi-23-1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/22/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Mitochondrial DNA's (mtDNA) haplogroups and SNPs were associated with the risk of different cancer. However, there is no evidence that the same haplogroup or mitochondrial SNP (mtSNP) exhibits the pleiotropic effect on multiple cancers. METHODS We recruited 2,489 participants, including patients with colorectal, hepatocellular, lung, ovarian, bladder, breast, pancreatic, and renal cell carcinoma. In addition, 715 healthy individuals from Northern China served as controls. Next, cross-tumor analysis was performed to determine whether mtDNA variation is associated with multiple cancers. RESULTS Our results revealed a significant decrease in the occurrence risk of multiple cancers among individuals belonging to haplogroup A [OR = 0.553, 95% confidence interval (CI) = 0.375-0.815, P = 0.003]. Furthermore, we identified 11 mtSNPs associated with multiple cancers and divided the population into high-risk and low-risk groups. Low-risk groups showed a significantly reduced risk of occurrence compared with high-risk groups (OR = 0.614, 95% CI = 0.507-0.744, P < 0.001). Furthermore, using interaction analysis, we identified a special group of individuals belonging to haplogroup A/M7 and the low-risk population, who exhibit a lower risk of multiple cancers compared with other populations (OR = 0.195, 95% CI = 0.106-0.359, P < 0.001). Finally, gene set enrichment analysis confirmed that haplogroup A/M7 patients had lower expression levels of cancer-related pathway genes compared with haplogroup D patients. CONCLUSIONS We found that specific mtDNA haplogroups and mtSNPs may play a role in predicting multiple cancer predisposition in Chinese populations. IMPACT This may provide a potential tool for early screening in clinical settings for individuals in the Chinese population.
Collapse
Affiliation(s)
- Dongbo Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zeyu Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Qing Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Fanfan Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zehui Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhenni Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Feng Zhou
- Department of General Surgery, the 71st Group Army Hospital of the People's Liberation Army, Xuzhou, Jiangsu, P.R. China
| | - Jinliang Xing
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhaohui Zhang
- Department of General Surgery, the 71st Group Army Hospital of the People's Liberation Army, Xuzhou, Jiangsu, P.R. China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
9
|
Feng Z, Peng F, Xie F, Liu Y, Zhang H, Ma J, Xing J, Guo X. Comparison of capture-based mtDNA sequencing performance between MGI and illumina sequencing platforms in various sample types. BMC Genomics 2024; 25:41. [PMID: 38191319 PMCID: PMC10773069 DOI: 10.1186/s12864-023-09938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Mitochondrial genome abnormalities can lead to mitochondrial dysfunction, which in turn affects cellular biology and is closely associated with the development of various diseases. The demand for mitochondrial DNA (mtDNA) sequencing has been increasing, and Illumina and MGI are two commonly used sequencing platforms for capture-based mtDNA sequencing. However, there is currently no systematic comparison of mtDNA sequencing performance between these two platforms. To address this gap, we compared the performance of capture-based mtDNA sequencing between Illumina's NovaSeq 6000 and MGI's DNBSEQ-T7 using tissue, peripheral blood mononuclear cell (PBMC), formalin-fixed paraffin-embedded (FFPE) tissue, plasma, and urine samples. RESULTS Our analysis indicated a high degree of consistency between the two platforms in terms of sequencing quality, GC content, and coverage. In terms of data output, DNBSEQ-T7 showed higher rates of clean data and duplication compared to NovaSeq 6000. Conversely, the amount of mtDNA data obtained by per gigabyte sequencing data was significantly lower in DNBSEQ-T7 compared to NovaSeq 6000. In terms of detection mtDNA copy number, both platforms exhibited good consistency in all sample types. When it comes to detection of mtDNA mutations in tissue, FFPE, and PBMC samples, the two platforms also showed good consistency. However, when detecting mtDNA mutations in plasma and urine samples, significant differenceof themutation number detected was observed between the two platforms. For mtDNA sequencing of plasma and urine samples, a wider range of DNA fragment size distribution was found in NovaSeq 6000 when compared to DNBSEQ-T7. Additionally, two platforms exhibited different characteristics of mtDNA fragment end preference. CONCLUSIONS In summary, the two platforms generally showed good consistency in capture-based mtDNA sequencing. However, it is necessary to consider the data preferences generated by two sequencing platforms when plasma and urine samples were analyzed.
Collapse
Affiliation(s)
- Zehui Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fanfan Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Ma
- Yanbian University Medical College, Yanji, 133002, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Xie F, Guo W, Wang X, Zhou K, Guo S, Liu Y, Sun T, Li S, Xu Z, Yuan Q, Zhang H, Gu X, Xing J, Liu S. Mutational profiling of mitochondrial DNA reveals an epithelial ovarian cancer-specific evolutionary pattern contributing to high oxidative metabolism. Clin Transl Med 2024; 14:e1523. [PMID: 38193640 PMCID: PMC10775184 DOI: 10.1002/ctm2.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) heavily relies on oxidative phosphorylation (OXPHOS) and exhibits distinct mitochondrial metabolic reprogramming. Up to now, the evolutionary pattern of somatic mitochondrial DNA (mtDNA) mutations in EOC tissues and their potential roles in metabolic remodelling have not been systematically elucidated. METHODS Based on a large somatic mtDNA mutation dataset from private and public EOC cohorts (239 and 118 patients, respectively), we most comprehensively characterised the EOC-specific evolutionary pattern of mtDNA mutations and investigated its biological implication. RESULTS Mutational profiling revealed that the mitochondrial genome of EOC tissues was highly unstable compared with non-cancerous ovary tissues. Furthermore, our data indicated the delayed heteroplasmy accumulation of mtDNA control region (mtCTR) mutations and near-complete absence of mtCTR non-hypervariable segment (non-HVS) mutations in EOC tissues, which is consistent with stringent negative selection against mtCTR mutation. Additionally, we observed a bidirectional and region-specific evolutionary pattern of mtDNA coding region mutations, manifested as significant negative selection against mutations in complex V (ATP6/ATP8) and tRNA loop regions, and potential positive selection on mutations in complex III (MT-CYB). Meanwhile, EOC tissues showed higher mitochondrial biogenesis compared with non-cancerous ovary tissues. Further analysis revealed the significant association between mtDNA mutations and both mitochondrial biogenesis and overall survival of EOC patients. CONCLUSIONS Our study presents a comprehensive delineation of EOC-specific evolutionary patterns of mtDNA mutations that aligned well with the specific mitochondrial metabolic remodelling, conferring novel insights into the functional roles of mtDNA mutations in EOC tumourigenesis and progression.
Collapse
Affiliation(s)
- Fanfan Xie
- Department of Obstetrics and GynecologyXijing HospitalFourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Wenjie Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Xingguo Wang
- Department of Obstetrics and GynecologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Shanshan Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Yang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Tianlei Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Shengjing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Zhiyang Xu
- Department of Obstetrics and GynecologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Qing Yuan
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Xiwen Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of PathologyXijing Hospital and School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and PathophysiologyFourth Military Medical UniversityXi'anChina
| | - Shujuan Liu
- Department of Obstetrics and GynecologyXijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
11
|
Wang Z, Zhou K, Yuan Q, Chen D, Hu X, Xie F, Liu Y, Xing J. A High-Efficiency Capture-Based NGS Approach for Comprehensive Analysis of Mitochondrial Transcriptome. Anal Chem 2023; 95:17046-17053. [PMID: 37937716 DOI: 10.1021/acs.analchem.3c03741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The transcription of the mitochondrial genome is pivotal for maintenance of mitochondrial functions, and the deregulated mitochondrial transcriptome contributes to various pathological changes. Despite substantial progress having been achieved in uncovering the transcriptional complexity of the nuclear transcriptome, many unknowns and controversies remain for the mitochondrial transcriptome, partially owing to the lack of a highly efficient mitochondrial RNA (mtRNA) sequencing and analysis approach. Here, we first comprehensively evaluated the influence of essential experimental protocols, including strand-specific library construction, two RNA enrichment strategies, and optimal rRNA depletion, on accurately profiling mitochondrial transcriptome in whole-transcriptome sequencing (WTS) data. Based on these insights, we developed a highly efficient approach specifically suitable for targeted sequencing of whole mitochondrial transcriptome, termed capture-based mtRNA seq (CAP), in which strand-specific library construction and optimal rRNA depletion were applied. Compared with WTS, CAP has a great decrease of required data volume without affecting the sensitivity and accuracy of detection. In addition, CAP also characterized the unannotated mt-tRNA transcripts whose expression levels are below the detection limits of conventional WTS. As a proof-of-concept characterization of mtRNAs, the transcription initiation sites and mtRNA cleavage ratio were accurately identified in CAP data. Moreover, CAP had very reliable performance in plasma and single-cell samples, highlighting its wide application. Altogether, the present study has established a highly efficient pipeline for targeted sequencing of mtRNAs, which may pave the way toward functional annotation of mtRNAs and mtRNA-based diagnostic and therapeutic strategies in various diseases.
Collapse
Affiliation(s)
- Zhenni Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an710032, China
| | - Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an710032, China
| | - Qing Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an710072, China
| | - Dongbo Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an710072, China
| | - Xi'e Hu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an710038, China
| | - Fanfan Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an710032, China
| | - Yang Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an710032, China
| |
Collapse
|
12
|
Xu Z, Zhou K, Wang Z, Liu Y, Wang X, Gao T, Xie F, Yuan Q, Gu X, Liu S, Xing J. Metastatic pattern of ovarian cancer delineated by tracing the evolution of mitochondrial DNA mutations. Exp Mol Med 2023; 55:1388-1398. [PMID: 37394583 PMCID: PMC10393968 DOI: 10.1038/s12276-023-01011-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 07/04/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic tumor and is characterized by a high rate of metastasis. Challenges in accurately delineating the metastatic pattern have greatly restricted the improvement of treatment in OC patients. An increasing number of studies have leveraged mitochondrial DNA (mtDNA) mutations as efficient lineage-tracing markers of tumor clonality. We applied multiregional sampling and high-depth mtDNA sequencing to determine the metastatic patterns in advanced-stage OC patients. Somatic mtDNA mutations were profiled from a total of 195 primary and 200 metastatic tumor tissue samples from 35 OC patients. Our results revealed remarkable sample-level and patient-level heterogeneity. In addition, distinct mtDNA mutational patterns were observed between primary and metastatic OC tissues. Further analysis identified the different mutational spectra between shared and private mutations among primary and metastatic OC tissues. Analysis of the clonality index calculated based on mtDNA mutations supported a monoclonal tumor origin in 14 of 16 patients with bilateral ovarian cancers. Notably, mtDNA-based spatial phylogenetic analysis revealed distinct patterns of OC metastasis, in which a linear metastatic pattern exhibited a low degree of mtDNA mutation heterogeneity and a short evolutionary distance, whereas a parallel metastatic pattern showed the opposite trend. Moreover, a mtDNA-based tumor evolutionary score (MTEs) related to different metastatic patterns was defined. Our data showed that patients with different MTESs responded differently to combined debulking surgery and chemotherapy. Finally, we observed that tumor-derived mtDNA mutations were more likely to be detected in ascitic fluid than in plasma samples. Our study presents an explicit view of the OC metastatic pattern, which sheds light on efficient treatment for OC patients.
Collapse
Affiliation(s)
- Zhiyang Xu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaixiang Zhou
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Zhenni Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xingguo Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fanfan Xie
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qing Yuan
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shujuan Liu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
13
|
Yan Z, Yuan Q, He Y, Peng F, Liu Y, Zhang H, Ji X, He X, Zhao Q, Xing J, Guo X. Mitochondrial DNA haplogroup M7: A predictor of poor prognosis for colorectal cancer patients in Chinese population. Cancer Sci 2023; 114:1056-1066. [PMID: 36382493 PMCID: PMC9986060 DOI: 10.1111/cas.15654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Haplogroups and single-nucleotide polymorphisms (SNP) of mitochondrial DNA (mtDNA) were associated with the prognosis of many types of cancer patients. However, whether mtDNA haplogroups contribute to clinical outcomes of colorectal cancer (CRC) in Chinese population remains to be determined. In this study, mtDNA of tissue samples from 445 CRC patients from Northwestern China was sequenced to evaluate the association between haplogroup and prognosis. The mtDNA sequencing data of 1015 CRC patients from Southern China were collected for validation. We found patients with mtDNA haplogroup M7 had a significantly higher death risk when compared with patients with other haplogroups in both Northwestern (Hazard ratio [HR] = 3.093, 95% CI = 1.768-5.411, p < 0.001) and Southern (HR = 1.607, 95% CI = 1.050-2.459, p = 0.029) China. Then, a haplogroup M7-based mtSNP classifier was selected by using LASSO Cox regression analysis. A nomogram comprising the mtSNP classifier and clinicopathological variables was developed to predict the prognosis of CRC patients (area under the curve [AUC] 0.735, 95% CI = 0.679-0.791). Furthermore, patients with high- and low-risk scores calculated by the haplogroup M7-based mtSNP classifier exhibited significantly different overall survival (OS) and recurrence-free survival (RFS) (all p < 0.001). Finally, RNA-seq and immunohistochemical analyses indicated the poor prognosis of patients with haplogroup M7 may be related to mitochondrial dysfunction and immune abnormalities in CRC tissues. In conclusion, the haplogroup M7 and haplogroup M7-based mtSNP classifier seems to be a practical and reliable prognostic predictor for CRC patients, which provides a potential tool of clinical decision-making for patients with haplogroup M7 in Chinese population.
Collapse
Affiliation(s)
- Zeyu Yan
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yiwei He
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Fan Peng
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xiaoying Ji
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qi Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jinliang Xing
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Recent advances in biosensors and sequencing technologies for the detection of mutations. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Keraite I, Becker P, Canevazzi D, Frias-López C, Dabad M, Tonda-Hernandez R, Paramonov I, Ingham MJ, Brun-Heath I, Leno J, Abulí A, Garcia-Arumí E, Heath SC, Gut M, Gut IG. A method for multiplexed full-length single-molecule sequencing of the human mitochondrial genome. Nat Commun 2022; 13:5902. [PMID: 36202811 PMCID: PMC9537161 DOI: 10.1038/s41467-022-33530-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Methods to reconstruct the mitochondrial DNA (mtDNA) sequence using short-read sequencing come with an inherent bias due to amplification and mapping. They can fail to determine the phase of variants, to capture multiple deletions and to cover the mitochondrial genome evenly. Here we describe a method to target, multiplex and sequence at high coverage full-length human mitochondrial genomes as native single-molecules, utilizing the RNA-guided DNA endonuclease Cas9. Combining Cas9 induced breaks, that define the mtDNA beginning and end of the sequencing reads, as barcodes, we achieve high demultiplexing specificity and delineation of the full-length of the mtDNA, regardless of the structural variant pattern. The long-read sequencing data is analysed with a pipeline where our custom-developed software, baldur, efficiently detects single nucleotide heteroplasmy to below 1%, physically determines phase and can accurately disentangle complex deletions. Our workflow is a tool for studying mtDNA variation and will accelerate mitochondrial research.
Collapse
Affiliation(s)
- Ieva Keraite
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Philipp Becker
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Qiagen, Hilden, Germany
| | - Davide Canevazzi
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cristina Frias-López
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Raúl Tonda-Hernandez
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ida Paramonov
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Matthew John Ingham
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Joint IRB-BSC Program in Computational Biology, Barcelona, Spain
| | - Jordi Leno
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Anna Abulí
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Elena Garcia-Arumí
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, VHIR, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Simon Charles Heath
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| | - Ivo Glynne Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
16
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
17
|
Su L, Guo S, Guo W, Ji X, Liu Y, Zhang H, Huang Q, Zhou K, Guo X, Gu X, Xing J. mitoDataclean: A machine learning approach for the accurate identification of cross-contamination-derived tumor mitochondrial DNA mutations. Int J Cancer 2022; 150:1677-1689. [PMID: 35001369 DOI: 10.1002/ijc.33927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022]
Abstract
Next-generation sequencing (NGS) of mitochondrial DNA (mtDNA) has widespread applications in aging and cancer studies. However, cross-contamination of mtDNA constitutes a major concern. Previous methods for the detection of mtDNA contamination mainly focus on haplogroup-level phylogeny, but neglect haplotype-level differences, leading to limited sensitivity and accuracy. In this study, we present mitoDataclean, a random-forest-based machine learning package for accurate identification of cross-contamination, evaluation of contamination levels and detection of contamination-derived variants in mtDNA NGS data. Comprehensive optimization of mitoDataclean revealed that training simulation with mixtures of small haplogroup distance and low polymorphic difference was critical for optimal modeling. Compared with existing methods, mitoDataclean exhibited significantly improved sensitivity and accuracy for the detection of sample contamination in simulated data. In addition, mitoDataclean achieved area under the curve values of 0.91 and 0.97 for discerning genuine and contamination-derived mtDNA variants in a simulated Western dataset and private sequencing contamination data, respectively, suggesting that this tool may be applicable for different populations and samples with different sources of contamination. Finally, mitoDataclean was further evaluated in several private and public datasets and showed a robust ability for contamination detection. Altogether, our study demonstrates that mitoDataclean may be used for accurate detection of contaminated samples and contamination-derived variants in mtDNA NGS data. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liping Su
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoying Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Kaixiang Zhou
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Zhou K, Liu Y, Yuan Q, Lai D, Guo S, Wang Z, Su L, Zhang H, Wang X, Guo W, Ji X, Gu X, Huang Q, Guo X, Xing J. Next-Generation Sequencing-Based Analysis of Urine Cell-Free mtDNA Reveals Aberrant Fragmentation and Mutation Profile in Cancer Patients. Clin Chem 2022; 68:561-573. [PMID: 34993545 DOI: 10.1093/clinchem/hvab268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Many studies have demonstrated the high efficacy of cell-free nuclear DNA in cancer diagnostics. Compared to nuclear DNA, mitochondrial DNA (mtDNA) exhibits distinct characteristics, including multiple copies per cell and higher mutation frequency. However, the potential applicability of cell-free mtDNA (cf-mtDNA) in plasma and urine remains poorly investigated. METHODS Here, we comprehensively analyzed the fragmentomic and mutational characteristics of cf-mtDNA in urine and plasma samples from controls and cancer patients using next-generation sequencing. RESULTS Compared to plasma cf-mtDNA, urine cf-mtDNA exhibited increased copy numbers and wider spread in fragment size distributions. Based on 2 independent animal models, urine cf-mtDNA originated predominantly from local shedding and transrenal excretion. Further analysis indicated an enhanced fragmentation of urine cf-mtDNA in renal cell carcinoma (RCC) and colorectal cancer (CRC) patients. Using the mtDNA sequence of peripheral blood mononuclear cells for reference, the mutant fragments were shorter than wild-type fragments in urine cf-mtDNA. Size selection of short urine cf-mtDNA fragments (<150 bp) significantly enhanced the somatic mutation detection. Our data revealed remarkably different base proportions of fragment ends between urine and plasma cf-mtDNA that also were associated with fragment size. Moreover, both RCC and CRC patients exhibited significantly higher T-end and lower A-end proportions in urine cf-mtDNA than controls. By integrating the fragmentomic and mutational features of urine cf-mtDNA, our nomogram model exhibited a robust efficacy for cancer diagnosis. CONCLUSIONS Our proof-of-concept findings revealed aberrant fragmentation and mutation profiles of urine cf-mtDNA in cancer patients that have diagnostic potential.
Collapse
Affiliation(s)
- Kaixiang Zhou
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qing Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Dong Lai
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Zhenni Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Liping Su
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- Department of Medical Technology, College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiangxu Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoying Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Stomatology Research Center, Xi'an Jiaotong University College of Stomatology, Xi'an, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, Cao K, Troiani J, Moseley A, Fan Z, Zolkipli-Cunningham Z, Goldstein A, Ganetzky RD, Muraresku CC, Peterson JT, Spinner NB, Wallace DC, Dulik MC, Falk MJ. Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab 2022; 135:93-101. [PMID: 34969639 PMCID: PMC8877466 DOI: 10.1016/j.ymgme.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/16/2023]
Abstract
Mitochondrial disease diagnosis requires interrogation of both nuclear and mitochondrial (mtDNA) genomes for single-nucleotide variants (SNVs) and copy number alterations, both in the proband and often maternal relatives, together with careful phenotype correlation. We developed a comprehensive mtDNA sequencing test ('MitoGenome') using long-range PCR (LR-PCR) to amplify the full length of the mtDNA genome followed by next generation sequencing (NGS) to accurately detect SNVs and large-scale mtDNA deletions (LSMD), combined with droplet digital PCR (ddPCR) for LSMD heteroplasmy quantification. Overall, MitoGenome tests were performed on 428 samples from 394 patients with suspected or confirmed mitochondrial disease. The positive yield was 11% (43/394), including 34 patients with pathogenic or likely pathogenic SNVs (the most common being m.3243A > G in 8/34 (24%) patients), 8 patients with single LSMD, and 3 patients with multiple LSMD exceeding 10% heteroplasmy levels. Two patients with both LSMD and pathogenic SNV were detected. Overall, this LR-PCR/NGS assay provides a highly accurate and comprehensive diagnostic method for simultaneous mtDNA SNV detection at heteroplasmy levels as low as 1% and LSMD detection at heteroplasmy levels below 10%. Inclusion of maternal samples for variant classification and ddPCR to quantify LSMD heteroplasmy levels further enables accurate pathogenicity assessment and clinical correlation interpretation of mtDNA genome sequence variants and copy number alterations.
Collapse
Affiliation(s)
- Jing Wang
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Alejandra Diaz-Miranda
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erfan Aref-Eshghi
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alison M Muir
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kajia Cao
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Juliana Troiani
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alicia Moseley
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhiqian Fan
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca D Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen C Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James T Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew C Dulik
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life (Basel) 2021; 11:life11070633. [PMID: 34209862 PMCID: PMC8307225 DOI: 10.3390/life11070633] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual’s lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.
Collapse
|
21
|
Liu Y, Zhou K, Guo S, Wang Y, Ji X, Yuan Q, Su L, Guo X, Gu X, Xing J. NGS-based accurate and efficient detection of circulating cell-free mitochondrial DNA in cancer patients. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:657-666. [PMID: 33575112 PMCID: PMC7851424 DOI: 10.1016/j.omtn.2020.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations are closely implicated in the pathogenesis of multiple cancers, making circulating cell-free mtDNA (ccf-mtDNA) as a potential non-invasive tumor biomarker. However, an effective approach to comprehensively profile ccf-mtDNA mutations is still lacking. In this study, we first characterized ccf-mtDNA by low-depth whole-genome sequencing (WGS) and found that plasma DNA samples exhibited a dramatic decrease in mtDNA copy number when compared with fresh tumor tissues. Further analysis revealed that plasma ccf-mtDNA had a biased distribution of fragment size with a peak around 90 bp. Based on these insights, we developed a robust captured-based mtDNA deep-sequencing approach that enables accurate and efficient detection of plasma ccf-mtDNA mutations by systematic optimization of probe quantity and length, hybridization temperature, and PCR amplification cycles. Moreover, we found that placement of isolated plasma for 6 h at both 4°C and room temperature (RT) led to a dramatic decrease of ccf-mtDNA stability, highlighting the importance of proper plasma sample processing. We further showed that the optimized approach can successfully detect a substantial fraction of tumor-specific mtDNA mutations in plasma ccf-mtDNA specifically from hepatocellular carcinoma (HCC) patients but not from colorectal cancer (CRC) patients, suggesting the presence of a potential cancer-specific difference in the abundance of tumor-derived mtDNA in plasma.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Kaixiang Zhou
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoying Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qing Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Liping Su
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|