1
|
Zhao S, Du X, Zhang Y, Bai J, Meng L, Li X, Ma J, Sheng H, Fu X, Guan Y, Yi Y, Yang L, Xia X, Yi X, Tan X, Zhou C. Development and application of a whole transcriptome sequencing assay for the detection of gene fusions in clinical cancer specimens. BMC Cancer 2025; 25:842. [PMID: 40340691 DOI: 10.1186/s12885-025-14186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Gene fusions are an important driver of cancer and require rapid and accurate detection to guide clinical decisions. However, the performance characteristics of whole transcriptome sequencing (WTS) for the detection of gene fusions have not been thoroughly investigated. METHODS We developed a novel WTS-based assay for the detection of gene fusions, MET exon 14 skipping and EGFR VIII alterations in clinical samples. RESULTS We defined a DV200 value ≥ 30% as the threshold for RNA degradation, RNA input, fusion expression and number of mapped reads greater than 100 ng, 40 copies/ng and 80 Mb for optimal sensitivity of the WTS assay. Our assay successfully identified 62 out of 63 known gene fusions, achieving a sensitivity of 98.4%. The specificity of the assay was 100%, as no fusions were detected in the 21 fusion-negative samples. Good repeatability and reproducibility were observed in replicates, except for the TPM3::NTRK1 fusion, which was expressed below the threshold. Of all fusions identified in 101 NSCLC samples, 68.9% (20/29) were potentially actionable, compared to 20% in pan-cancer samples. In addition to actionable fusions, we also identified many fusions with potential diagnostic and prognostic value in pan-cancer. CONCLUSIONS We have developed a novel WTS assay with high sensitivity, specificity, repeatability and reproducibility. This assay can identify potentially actionable gene fusions and provides valuable insights into the fusion landscape in various cancers, which may help guide treatment decisions and aid in diagnosis and prognosis.
Collapse
Affiliation(s)
- Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinhua Du
- Geneplus-Beijing Institute, Beijing, China
| | - Yan Zhang
- Geneplus-Beijing Institute, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing, China
- College of Future Technology, Peking University, Beijing, China
| | - Lu Meng
- Geneplus-Beijing Institute, Beijing, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Jiaxin Ma
- Geneplus-Beijing Institute, Beijing, China
| | - HeYu Sheng
- Geneplus-Beijing Institute, Beijing, China
| | - Xiaorui Fu
- Geneplus-Beijing Institute, Beijing, China
| | | | - Yuting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Ling Yang
- Geneplus-Beijing Institute, Beijing, China
| | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Xinxin Tan
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, Guangdong, China.
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Shanghai, China.
| |
Collapse
|
2
|
Ji G, Yao Q, Ren M, Bai Q, Zhu X, Zhou X. An accurate DNA and RNA based targeted sequencing assay for clinical detection of gene fusions in solid tumors. Sci Rep 2025; 15:7223. [PMID: 40021757 PMCID: PMC11870997 DOI: 10.1038/s41598-025-91640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
Gene fusions are one of the most important molecular biomarkers for tumor diagnosis, classification and targeted therapy. How to accurately detect them is a key issue in clinical work. In this study, a custom-designed integration of DNA and RNA-based next generation sequencing (NGS) assay including 16 targeted therapy related genes was developed and validated to identify gene fusions in solid tumors. This assay accurately identified all 10 different types of fusion in 8 commercial fusion spiked-in reference standards and 29 fusions including 16 different fusion forms in 60 clinical solid tumor samples previously identified by clinical testing methods. In addition, a TPM3::NTRK1 fusion was additionally identified and validated by Sanger sequencing, which showed a false-negative result for the previous result. Mutational abundance limit of detection for the assay was assessed with a series of dilution experiments. These fusions can be stably detected when the mutational abundance is down to 5% for DNA and 250-400 copies/100 ng for RNA. The intra-assay and inter-assay reproducibility was observed in three samples and three replicates. This integration of DNA and RNA-based NGS assay shows excellent performance on formalin-fixed, paraffin-embedded samples, results at different levels can complement each other, thereby facilitating precise diagnosis and treatment.
Collapse
Affiliation(s)
- Gang Ji
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiaoli Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Gridina MM, Stepanchuk YK, Nurridinov MA, Lagunov TA, Torgunakov NY, Shadsky AA, Ryabova AI, Vasiliev NV, Vtorushin SV, Gerashchenko TS, Denisov EV, Travin MA, Korolev MA, Fishman VS. Modification of the Hi-C Technology for Molecular Genetic Analysis of Formalin-Fixed Paraffin-Embedded Sections of Tumor Tissues. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:637-652. [PMID: 38831501 DOI: 10.1134/s0006297924040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 06/05/2024]
Abstract
Molecular genetic analysis of tumor tissues is the most important step towards understanding the mechanisms of cancer development; it is also necessary for the choice of targeted therapy. The Hi-C (high-throughput chromatin conformation capture) technology can be used to detect various types of genomic variants, including balanced chromosomal rearrangements, such as inversions and translocations. We propose a modification of the Hi-C method for the analysis of chromatin contacts in formalin-fixed paraffin-embedded (FFPE) sections of tumor tissues. The developed protocol allows to generate high-quality Hi-C data and detect all types of chromosomal rearrangements. We have analyzed various databases to compile a comprehensive list of translocations that hold clinical importance for the targeted therapy selection. The practical value of molecular genetic testing is its ability to influence the treatment strategies and to provide prognostic insights. Detecting specific chromosomal rearrangements can guide the choice of the targeted therapies, which is a critical aspect of personalized medicine in oncology.
Collapse
Affiliation(s)
- Maria M Gridina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yana K Stepanchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Miroslav A Nurridinov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Timofey A Lagunov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nikita Yu Torgunakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Artem A Shadsky
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Anastasia I Ryabova
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Nikolay V Vasiliev
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Sergey V Vtorushin
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
- Siberian State Medical University, Ministry of Health of Russia, Tomsk, 634050, Russia
| | - Tatyana S Gerashchenko
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Evgeny V Denisov
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Mikhail A Travin
- Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Maxim A Korolev
- Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Veniamin S Fishman
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Buckley J, Schmidt RJ, Ostrow D, Maglinte D, Bootwalla M, Ruble D, Govindarajan A, Ji J, Kovach AE, Orgel E, Raca G, Navid F, Mascarenhas L, Pawel B, Robison N, Gai X, Biegel JA. An Exome Capture-Based RNA-Sequencing Assay for Genome-Wide Identification and Prioritization of Clinically Important Fusions in Pediatric Tumors. J Mol Diagn 2024; 26:127-139. [PMID: 38008288 DOI: 10.1016/j.jmoldx.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
This study reports the development of an exome capture-based RNA-sequencing assay to detect recurring and novel fusions in hematologic, solid, and central nervous system tumors. The assay used Twist Comprehensive Exome capture with either fresh or formalin-fixed samples and a bioinformatic platform that provides fusion detection, prioritization, and downstream curation. A minimum of 50 million uniquely mapped reads, a consensus read alignment/fusion calling approach using four callers (Arriba, FusionCatcher, STAR-Fusion, and Dragen), and custom software were used to integrate, annotate, and rank the candidate fusion calls. In an evaluation of 50 samples, the number of calls varied substantially by caller, from a mean of 24.8 with STAR-Fusion to 259.6 with FusionCatcher; only 1.1% of calls were made by all four callers. Therefore a filtering and ranking algorithm was developed based on multiple criteria, including number of supporting reads, calling consensus, genes involved, and cross-reference against databases of known cancer-associated or likely false-positive fusions. This approach was highly effective in pinpointing known clinically relevant fusions, ranking them first in 47 of 50 samples (94%). Detection of pathogenic gene fusions in three diagnostically challenging cases highlights the importance of a genome-wide and nontargeted method for fusion detection in pediatric cancer.
Collapse
Affiliation(s)
- Jonathan Buckley
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Ryan J Schmidt
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Dejerianne Ostrow
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dennis Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Moiz Bootwalla
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - David Ruble
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ananthanarayanan Govindarajan
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Alexandra E Kovach
- Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Etan Orgel
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Gordana Raca
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Fariba Navid
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Leo Mascarenhas
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Bruce Pawel
- Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Nathan Robison
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California.
| |
Collapse
|
5
|
Yuan P, Xue X, Qiu T, Ying J. MET alterations detection platforms and clinical implications in solid tumors: a comprehensive review of literature. Ther Adv Med Oncol 2024; 16:17588359231221910. [PMID: 38249331 PMCID: PMC10798113 DOI: 10.1177/17588359231221910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
MET alterations, including MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion, play pivotal roles in primary tumorigenesis and acquired resistance to targeted therapies, especially EGFR tyrosine kinase inhibitors. They represent important diagnostic, prognostic, and predictive biomarkers in many solid tumor types. However, the detection of MET alterations is challenging due to the complexity of MET alterations and the diversity of platform technologies. Therefore, techniques with high sensitivity, specificity, and reliable molecular detection accuracy are needed to overcome such hindrances and aid in biomarker-guided therapies. The current review emphasizes the role of MET alterations as oncogenic drivers in a variety of cancers and their involvement in the development of resistance to targeted therapies. Moreover, our review provides an overview of and recommendations on the selection of various cross-platform technologies for the detection of MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion. Furthermore, challenges and hurdles underlying these common detection platforms are discussed.
Collapse
Affiliation(s)
- Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qiu
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
6
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
7
|
Dorney R, Dhungel BP, Rasko JEJ, Hebbard L, Schmitz U. Recent advances in cancer fusion transcript detection. Brief Bioinform 2022; 24:6918739. [PMID: 36527429 PMCID: PMC9851307 DOI: 10.1093/bib/bbac519] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Extensive investigation of gene fusions in cancer has led to the discovery of novel biomarkers and therapeutic targets. To date, most studies have neglected chromosomal rearrangement-independent fusion transcripts and complex fusion structures such as double or triple-hop fusions, and fusion-circRNAs. In this review, we untangle fusion-related terminology and propose a classification system involving both gene and transcript fusions. We highlight the importance of RNA-level fusions and how long-read sequencing approaches can improve detection and characterization. Moreover, we discuss novel bioinformatic tools to identify fusions in long-read sequencing data and strategies to experimentally validate and functionally characterize fusion transcripts.
Collapse
Affiliation(s)
- Ryley Dorney
- epartment of Molecular & Cell Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD 4811, Australia,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Bijay P Dhungel
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia,Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2006, Australia,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia,Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lionel Hebbard
- epartment of Molecular & Cell Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD 4811, Australia,Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Ulf Schmitz
- Corresponding author. Ulf Schmitz, Department of Molecular and Cell Biology, College of Public Health, Medical and Vet Sciences, James Cook University, Douglas, QLD 4811, Australia. E-mail:
| |
Collapse
|
8
|
Hu W, Yuan L, Zhang X, Ni Y, Hong D, Wang Z, Li X, Ling Y, Zhang C, Deng W, Tian M, Ding R, Song C, Li J, Zhang X. Development and validation of an RNA sequencing panel for gene fusions in soft tissue sarcoma. Cancer Sci 2022; 113:1843-1854. [PMID: 35238118 PMCID: PMC9128172 DOI: 10.1111/cas.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Gene fusions are one of the most common genomic alterations in soft tissue sarcomas (STS), which contain more than 70 subtypes. In this study, a custom-designed RNA sequencing panel including 67 genes was developed and validated to identify gene fusions in STS. In total, 92 STS samples were analyzed using the RNA panel and 95.7% (88/92) successfully passed all the quality control parameters. Fusion transcripts were detected in 60.2% (53/88) of samples, including three novel fusions (MEG3-PLAG1, SH3BP1-NTRK1, and RPSAP52-HMGA2). The panel demonstrated excellent analytic accuracy, with 93.9% sensitivity and 100% specificity. The intra-assay, inter-assay, and personnel consistencies were all 100.0% in four samples and three replicates. In addition, different variants of ESWR1-FLI, COL1A1-PDGFB, NAB2-STAT6, and SS18-SSX were also identified in the corresponding subtypes of STS. In combination with histological and molecular diagnosis, 14.8% (13/88) patients finally changed preliminary histology-based classification. Collectively, this RNA panel developed in our study shows excellent performance on RNA from formalin-fixed, paraffin-embedded samples and can complement DNA-based assay, thereby facilitating precise diagnosis and novel fusion detection.
Collapse
Affiliation(s)
- Wanming Hu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineDepartment of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Li Yuan
- Department of PathologyGuangzhou Women and Children's Medical CenterGuangzhouChina
| | - Xinke Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineDepartment of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Ni
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
- Department of MedicineNanjing Simcere Medical Laboratory Science Co., LtdNanjingChina
| | - Dongchun Hong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineDepartment of Medical Melanoma and SarcomaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhicai Wang
- Department of General SurgeryJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaomin Li
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Yuan Ling
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Chao Zhang
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Wanglong Deng
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Minqi Tian
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Ran Ding
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Chao Song
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., LtdNanjingChina
- Department of MedicineNanjing Simcere Medical Laboratory Science Co., LtdNanjingChina
| | - Jianmin Li
- Department of OrthopedicsQilu Hospital of Shandong UniversityJinanChina
| | - Xing Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineDepartment of Medical Melanoma and SarcomaSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
9
|
Li C, Zhang J, Li J, Qiao G, Zhan Y, Xu Y, Yang H. BACs-on-Beads Assay for the Prenatal Diagnosis of Microdeletion and Microduplication Syndromes. Mol Diagn Ther 2021; 25:339-349. [PMID: 33826125 DOI: 10.1007/s40291-021-00522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate the clinical value of BACs-on-Beads (BoBs) assay in detection of microdeletion and microduplication syndromes. METHODS A total of 6,814 cases of amniotic fluid cells collected from January 2015 to July 2020 in our hospital were analyzed by chromosomal karyotyping and BoBs assay. Fluorescence in situ hybridization (FISH) or chromosomal microarray analysis (CMA) provided further validation for the cases of microdeletion and microduplication. RESULTS Thirty microdeletion and microduplication syndromes were identified by BoBs with an incidence of ~1/227, including 22q11.2 microduplication (0.044%, 3/6814), DiGeorge I syndrome (0.044%, 3/6814), 17p11.2 microduplication (0.015%, 1/6814), Smith-Magenis syndrome (0.015%, 1/6814), 17p11.2p11.3 microduplication (0.015%, 1/6814), Williams-Beuren syndrome (0.088%, 6/6814), 7q11.2 microduplication (0.029%, 2/6814), DiGeorge II syndrome (0.015%, 1/6814), 18p11.32p11.21 microduplication (0.015%, 1/6814), Wolf-Hirschhorn syndrome (0.029%, 2/6814), 4p16.3 microduplication (0.015%, 1/6814), Langer-Giedion syndrome (0.015%, 1/6814), Miller-Dieker syndrome (0.015%, 1/6814), Cri du Chat syndrome (0.015%, 1/6814), Xp22.31 microdeletion (0.059%, 4/6814), Prader-Willi syndrome (0.015%, 1/6814). High concordance was obtained between BoBs and FISH or CMA. However, only four cases were detected by chromosomal karyotyping. CONCLUSION BoBs assay can rapidly detect microdeletion and microduplication syndromes, which compensates the shortcomings of conventional chromosomal karyotyping and greatly improves the efficiency and accuracy of prenatal diagnosis.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Guyuan Qiao
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Ying Zhan
- Department of Obstetrics and Gynecology, 518 Hospital of PLA, Xi'an, 710043, Shaanxi, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|