1
|
Giannoulis A, Ackermann K, Spindler PE, Higgins C, Cordes DB, Slawin AMZ, Prisner TF, Bode BE. Nitroxide–nitroxide and nitroxide–metal distance measurements in transition metal complexes with two or three paramagnetic centres give access to thermodynamic and kinetic stabilities. Phys Chem Chem Phys 2018; 20:11196-11205. [DOI: 10.1039/c8cp01611a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Broadband and highly resolved EPR distance measurements reveal multimers and their kinetic stabilities.
Collapse
Affiliation(s)
- A. Giannoulis
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| | - K. Ackermann
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| | - P. E. Spindler
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- Goethe-University Frankfurt am Main
- D-60438 Frankfurt am Main
- Germany
| | - C. Higgins
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - D. B. Cordes
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - A. M. Z. Slawin
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - T. F. Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- Goethe-University Frankfurt am Main
- D-60438 Frankfurt am Main
- Germany
| | - B. E. Bode
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| |
Collapse
|
2
|
Shepard EM, Byer AS, Aggarwal P, Betz JN, Scott AG, Shisler KA, Usselman RJ, Eaton GR, Eaton SS, Broderick JB. Electron Spin Relaxation and Biochemical Characterization of the Hydrogenase Maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] Cluster Communication and Hydrogenase Activation. Biochemistry 2017; 56:3234-3247. [PMID: 28525271 PMCID: PMC5490485 DOI: 10.1021/acs.biochem.7b00169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nature utilizes [FeFe]-hydrogenase enzymes to catalyze the interconversion between H2 and protons and electrons. Catalysis occurs at the H-cluster, a carbon monoxide-, cyanide-, and dithiomethylamine-coordinated 2Fe subcluster bridged via a cysteine to a [4Fe-4S] cluster. Biosynthesis of this unique metallocofactor is accomplished by three maturase enzymes denoted HydE, HydF, and HydG. HydE and HydG belong to the radical S-adenosylmethionine superfamily of enzymes and synthesize the nonprotein ligands of the H-cluster. These enzymes interact with HydF, a GTPase that acts as a scaffold or carrier protein during 2Fe subcluster assembly. Prior characterization of HydF demonstrated the protein exists in both dimeric and tetrameric states and coordinates both [4Fe-4S]2+/+ and [2Fe-2S]2+/+ clusters [Shepard, E. M., Byer, A. S., Betz, J. N., Peters, J. W., and Broderick, J. B. (2016) Biochemistry 55, 3514-3527]. Herein, electron paramagnetic resonance (EPR) is utilized to characterize the [2Fe-2S]+ and [4Fe-4S]+ clusters bound to HydF. Examination of spin relaxation times using pulsed EPR in HydF samples exhibiting both [4Fe-4S]+ and [2Fe-2S]+ cluster EPR signals supports a model in which the two cluster types either are bound to widely separated sites on HydF or are not simultaneously bound to a single HydF species. Gel filtration chromatographic analyses of HydF spectroscopic samples strongly suggest the [2Fe-2S]+ and [4Fe-4S]+ clusters are coordinated to the dimeric form of the protein. Lastly, we examined the 2Fe subcluster-loaded form of HydF and showed the dimeric state is responsible for [FeFe]-hydrogenase activation. Together, the results indicate a specific role for the HydF dimer in the H-cluster biosynthesis pathway.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Amanda S Byer
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Priyanka Aggarwal
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Jeremiah N Betz
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Anna G Scott
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Krista A Shisler
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Robert J Usselman
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| |
Collapse
|
3
|
Razzaghi S, Brooks EK, Bordignon E, Hubbell WL, Yulikov M, Jeschke G. EPR relaxation-enhancement-based distance measurements on orthogonally spin-labeled T4-lysozyme. Chembiochem 2013; 14:1883-90. [PMID: 23775845 PMCID: PMC3804414 DOI: 10.1002/cbic.201300165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 12/20/2022]
Abstract
Lanthanide-induced enhancement of the longitudinal relaxation of nitroxide radicals in combination with orthogonal site-directed spin labeling is presented as a systematic distance measurement method intended for studies of bio-macromolecules and bio-macromolecular complexes. The approach is tested on a water-soluble protein (T4-lysozyme) for two different commercially available lanthanide labels, and complemented by previously reported data on a membrane-inserted polypeptide. Single temperature measurements are shown to be sufficient for reliable distance determination, with an upper measurable distance limit of about 5-6 nm. The extracted averaged distances represent the closest approach in Ln(III) -nitroxide distance distributions. Studies of conformational changes and of bio-macromolecule association-dissociation are proposed as possible application area of the relaxation-enhancement-based distance measurements.
Collapse
Affiliation(s)
| | - Evan K. Brooks
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | | | - Wayne L. Hubbell
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| |
Collapse
|
4
|
Verkhovsky MI, Bogachev AV, Pivtsov AV, Bertsova YV, Fedin MV, Bloch DA, Kulik LV. Sodium-dependent movement of covalently bound FMN residue(s) in Na(+)-translocating NADH:quinone oxidoreductase. Biochemistry 2012; 51:5414-21. [PMID: 22697411 DOI: 10.1021/bi300322n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a component of respiratory electron-transport chain of various bacteria generating redox-driven transmembrane electrochemical Na(+) potential. We found that the change in Na(+) concentration in the reaction medium has no effect on the thermodynamic properties of prosthetic groups of Na(+)-NQR from Vibrio harveyi, as was revealed by the anaerobic equilibrium redox titration of the enzyme's EPR spectra. On the other hand, the change in Na(+) concentration strongly alters the EPR spectral properties of the radical pair formed by the two anionic semiquinones of FMN residues bound to the NqrB and NqrC subunits (FMN(NqrB) and FMN(NqrC)). Using data obtained by pulse X- and Q-band EPR as well as by pulse ENDOR and ELDOR spectroscopy, the interspin distance between FMN(NqrB) and FMN(NqrC) was found to be 15.3 Å in the absence and 20.4 Å in the presence of Na(+), respectively. Thus, the distance between the covalently bound FMN residues can vary by about 5 Å upon changes in Na(+) concentration. Using these results, we propose a scheme of the sodium potential generation by Na(+)-NQR based on the redox- and sodium-dependent conformational changes in the enzyme.
Collapse
Affiliation(s)
- Michael I Verkhovsky
- Department of Molecular Energetics of Microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
5
|
Lueders P, Jäger H, Hemminga MA, Jeschke G, Yulikov M. Multiple Pathway Relaxation Enhancement in the System Composed of Three Paramagnetic Species: Nitroxide Radical-Ln(3+)-O2. J Phys Chem Lett 2012; 3:1336-1340. [PMID: 26286779 DOI: 10.1021/jz300316q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Longitudinal relaxation of nitroxide spin-labels has been measured for a membrane-incorporated α-helical polypeptide in the presence and absence of residual amounts of membrane-dissolved O2 and paramagnetic Dy(3+) ions. Such a model system, containing three different types of paramagnetic species, provides an important example of nonadditivity of two different relaxation channels for the nitroxide spins.
Collapse
Affiliation(s)
- Petra Lueders
- †Laboratory of Physical Chemistry, ETH, Zurich, Switzerland
| | - Heidrun Jäger
- ‡Laboratory of Biophysics,Wageningen University, Wageningen, The Netherlands
| | - Marcus A Hemminga
- ‡Laboratory of Biophysics,Wageningen University, Wageningen, The Netherlands
| | - Gunnar Jeschke
- †Laboratory of Physical Chemistry, ETH, Zurich, Switzerland
| | - Maxim Yulikov
- †Laboratory of Physical Chemistry, ETH, Zurich, Switzerland
| |
Collapse
|
6
|
The electron transfer flavoprotein: ubiquinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1910-6. [PMID: 20937244 DOI: 10.1016/j.bbabio.2010.10.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/20/2010] [Accepted: 10/05/2010] [Indexed: 12/30/2022]
Abstract
Electron transfer flavoprotein: ubiqionone oxidoreductase (ETF-QO) is a component of the mitochondrial respiratory chain that together with electron transfer flavoprotein (ETF) forms a short pathway that transfers electrons from 11 different mitochondrial flavoprotein dehydrogenases to the ubiquinone pool. The X-ray structure of the pig liver enzyme has been solved in the presence and absence of a bound ubiquinone. This structure reveals ETF-QO to be a monotopic membrane protein with the cofactors, FAD and a [4Fe-4S](+1+2) cluster, organised to suggests that it is the flavin that serves as the immediate reductant of ubiquinone. ETF-QO is very highly conserved in evolution and the recombinant enzyme from the bacterium Rhodobacter sphaeroides has allowed the mutational analysis of a number of residues that the structure suggested are involved in modulating the reduction potential of the cofactors. These experiments, together with the spectroscopic measurement of the distances between the cofactors in solution have confirmed the intramolecular pathway of electron transfer from ETF to ubiquinone. This approach can be extended as the R. sphaeroides ETF-QO provides a template for investigating the mechanistic consequences of single amino acid substitutions of conserved residues that are associated with a mild and late onset variant of the metabolic disease multiple acyl-CoA dehydrogenase deficiency (MADD).
Collapse
|
7
|
Hobaika Z, Zargarian L, Boulard Y, Maroun RG, Mauffret O, Fermandjian S. Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase {alpha}4 helix. Nucleic Acids Res 2010; 37:7691-700. [PMID: 19808934 PMCID: PMC2794180 DOI: 10.1093/nar/gkp824] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
HIV-1 integrase integrates retroviral DNA through 3′-processing and strand transfer reactions in the presence of a divalent cation (Mg2+ or Mn2+). The α4 helix exposed at the catalytic core surface is essential to the specific recognition of viral DNA. To define group determinants of recognition, we used a model composed of a peptide analogue of the α4 helix, oligonucleotides mimicking processed and unprocessed U5 LTR end and 5 mM Mg2+. Circular dichroism, fluorescence and NMR experiments confirmed the implication of the α4 helix polar/charged face in specific and non-specific bindings to LTR ends. The specific binding requires unprocessed LTR ends—i.e. an unaltered 3′-processing site CA↓GT3′—and is reinforced by Mg2+ (Kd decreases from 2 to 0.8 nM). The latter likely interacts with the ApG and GpT3′ steps of the 3′-processing site. With deletion of GT3′, only persists non-specific binding (Kd of 100 μM). Proton chemical shift deviations showed that specific binding need conserved amino acids in the α4 helix and conserved nucleotide bases and backbone groups at LTR ends. We suggest a conserved recognition mechanism based on both direct and indirect readout and which is subject to evolutionary pressure.
Collapse
Affiliation(s)
- Zeina Hobaika
- Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
| | | | | | | | | | | |
Collapse
|
8
|
Sarewicz M, Dutka M, Froncisz W, Osyczka A. Magnetic interactions sense changes in distance between heme b(L) and the iron-sulfur cluster in cytochrome bc(1). Biochemistry 2009; 48:5708-20. [PMID: 19415898 PMCID: PMC2697599 DOI: 10.1021/bi900511b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
During the operation of cytochrome bc1, a key enzyme of biological energy conversion, the iron−sulfur head domain of one of the subunits of the catalytic core undergoes a large-scale movement from the catalytic quinone oxidation Qo site to cytochrome c1. This changes a distance between the two iron−two sulfur (FeS) cluster and other cofactors of the redox chains. Although the role and the mechanism of this movement have been intensely studied, they both remain poorly understood, partly because the movement itself is not easily traceable experimentally. Here, we take advantage of magnetic interactions between the reduced FeS cluster and oxidized heme bL to use dipolar enhancement of phase relaxation of the FeS cluster as a spectroscopic parameter which with a unique clarity and specificity senses changes in the distance between those two cofactors. The dipolar relaxation curves measured by EPR at Q-band in a glass state of frozen solution (i.e., under the conditions trapping a dynamic distribution of FeS positions that existed in a liquid phase) of isolated cytochrome bc1 were compared with the curves calculated for the FeS cluster occupying distinct positions in various crystals of cytochrome bc1. This comparison revealed the existence of a broad distribution of the FeS positions in noninhibited cytochrome bc1 and demonstrated that the average equilibrium position is modifiable by inhibitors or mutations. To explain the results, we assume that changes in the equilibrium distribution of the FeS positions are the result of modifications of the orienting potential gradient in which the diffusion of the FeS head domain takes place. The measured changes in the phase relaxation enhancement provide the first direct experimental description of changes in the strength of dipolar coupling between the FeS cluster and heme bL.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | |
Collapse
|
9
|
Bogachev AV, Kulik LV, Bloch DA, Bertsova YV, Fadeeva MS, Verkhovsky MI. Redox properties of the prosthetic groups of Na(+)-translocating nadh:quinone oxidoreductase. 1. Electron paramagnetic resonance study of the enzyme. Biochemistry 2009; 48:6291-8. [PMID: 19496621 DOI: 10.1021/bi900524m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Redox properties of all EPR-detectable prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from Vibrio harveyi were studied at pH 7.5 using cryo-EPR spectroelectrochemistry. Titration shows five redox transitions. One with E(m) = -275 mV belongs to the reduction of the [2Fe-2S] cluster, and the four others reflect redox transitions of flavin cofactors. Two transitions (E(m)(1) = -190 mV and E(m)(2) = -275 mV) originate from the formation of FMN anion radical, covalently bound to the NqrC subunit, and its subsequent reduction. The remaining two transitions arise from the two other flavin cofactors. A high potential (E(m) = -10 mV) transition corresponds to the reduction of riboflavin neutral radical, which is stable at rather high redox potentials. An E(m) = -130 mV transition reflects the formation of FMN anion radical from a flavin covalently bound to the NqrB subunit, which stays as a radical down to very low potentials. Taking into account the EPR-silent, two-electron transition of noncovalently bound FAD located in the NqrF subunit, there are four flavins in Na(+)-NQR all together. Defined by dipole-dipole magnetic interaction measurements, the interspin distance between the [2Fe-2S](+) cluster and the NqrB subunit-bound FMN anion radical is found to be 22.5 +/- 1.5 A, which means that for the functional electron transfer between these two centers another cofactor, most likely FMN bound to the NqrC subunit, should be located.
Collapse
Affiliation(s)
- Alexander V Bogachev
- Department of Molecular Energetics of Microorganisms, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Kathirvelu V, Sato H, Eaton SS, Eaton GR. Electron spin relaxation rates for semiquinones between 25 and 295K in glass-forming solvents. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:111-120. [PMID: 19223213 PMCID: PMC2757793 DOI: 10.1016/j.jmr.2009.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 01/13/2009] [Accepted: 01/22/2009] [Indexed: 05/27/2023]
Abstract
Electron spin lattice relaxation rates for five semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,5-di-t-amyl-1,4-benzosemiquinone, 2,5-di-phenyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, tetrahydroxy-1,4-benzosemiquione) were studied by long-pulse saturation recovery EPR in 1:4 glycerol:ethanol, 1:1 glycerol:ethanol, and triethanolamine between 25 and 295K. Although the dominant process changes with temperature, relaxation rates vary smoothly with temperature, even near the glass transition temperatures, and could be modeled as the sum of contributions that have the temperature dependence that is predicted for the direct, Raman, local mode and tumbling-dependent processes. At 85K, which is in a temperature range where the Raman process dominates, relaxation rates along the g(xx) (g approximately 2.006) and g(yy) (g approximately 2.005) axes are about 2.7-1.5 times faster than along the g(zz) axis (g=2.0023). In highly viscous triethanolamine, contributions from tumbling-dependent processes are negligible. At temperatures above 100K relaxation rates in triethanolamine are unchanged between X-band (9.5GHz) and Q-band (34GHz), so the process that dominates in this temperature interval was assigned as a local mode rather than a thermally activated process. Because the largest proton hyperfine couplings are only 2.2G, spin rotation makes a larger contribution than tumbling-dependent modulation of hyperfine anisotropy. Since g anisotropy is small, tumbling-dependent modulation of g anisotropy makes a smaller contribution than spin rotation at X-band. Although there was negligible impact of methyl rotation on T(1), rotation of t-butyl or t-amyl methyl groups enhances spin echo dephasing between 85 and 150K.
Collapse
Affiliation(s)
| | | | - Sandra S. Eaton
- Corresponding author: Professor Sandra S. Eaton, Department of Chemistry and Biochemistry, University of Denver Denver, CO 80208, 303-871-3102, Fax: 303-871-2254,
| | | |
Collapse
|
11
|
Electron-electron distances in spin-labeled low-spin metmyoglobin variants by relaxation enhancement. Biophys J 2008; 95:5306-16. [PMID: 18775958 DOI: 10.1529/biophysj.108.141887] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thirteen single-cysteine variants of myoglobin were prepared by overexpression of apoprotein, spin labeling, and reconstitution with hemin. This procedure resulted in a protein with fewer hemichrome impurities than was obtained by an overexpression of holo-protein followed by spin labeling. Coordination of cyanide to the met heme formed low-spin complexes. Iron-nitroxyl interspin distances in the range of 17-30 A were determined by saturation recovery measurements of the enhancement of the nitroxyl spin lattice relaxation rates between approximately 30-140 K, and by spin-echo measurements of the enhancement of spin-spin relaxation rates at 10-30 K. Interspin distances were also calculated, using the molecular modeling program Insight II (Accelrys, San Diego, CA). For most variants, distances determined from the temperature dependence of spin-echo intensities at a pulse spacing of 200 ns agree with distances measured by saturation recovery and calculated with Insight II within about an angstrom, which is within experimental uncertainties. Measurements of interspin distances via spin-spin relaxation enhancement have the advantages that maximum effects are observed for slower metal relaxation rates than are required for spin-lattice relaxation enhancement, and the impact diminishes as r(-3) instead of r(-6), as with spin-lattice relaxation enhancement, which permits measurements at longer distances.
Collapse
|
12
|
Swanson MA, Usselman RJ, Frerman FE, Eaton GR, Eaton SS. The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein. Biochemistry 2008; 47:8894-901. [PMID: 18672901 DOI: 10.1021/bi800507p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S] (2+,1+) and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S] (2+,1+) to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S] (+) at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF 1e (-) catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF.
Collapse
Affiliation(s)
- Michael A Swanson
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | |
Collapse
|
13
|
Brereton PS, Verhagen MF, Zhou ZH, Adams MW. Effect of iron-sulfur cluster environment in modulating the thermodynamic properties and biological function of ferredoxin from Pyrococcus furiosus. Biochemistry 1998; 37:7351-62. [PMID: 9585549 PMCID: PMC2731698 DOI: 10.1021/bi972864b] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ferredoxin (7.5 kDa) of the hyperthermophilic archaeon, Pyrococcus furiosus, contains a single [4Fe-4S]1+,2+ cluster that is coordinated by three Cys and one Asp residue rather than the expected four Cys. The role of this Asp residue was investigated using a series of mutants, D14X, where X = C, S, H, N, V, and Y, prepared by heterologous gene expression in Escherichia coli. While the recombinant form of the wild-type and the D14S and D14C mutants contained a [4Fe-4S]1+,2+ cluster, the D14V, D14H, D14Y, and D14N proteins contained a [3Fe-4S]0,+ center, as determined by visible spectroscopy and electrochemistry. The redox potentials (at pH 7.0, 23 degrees C) of the D14C and D14S mutants were decreased by 58 and 133 mV, respectively, compared to those of the wild-type 4Fe-ferredoxin (Em -368 mV), while those of the 3Fe-protein mutants (including the 3Fe-form of the D14S, generated by chemical oxidation) were between 15 and 118 mV more positive than that of wild-type 3Fe-form (obtained by chemical oxidation, Em -203 mV). The reduction potentials of all of the 3Fe-forms, except the D14S mutant, showed a pH response over the range 3.0-10.0 with a pK of 3.3-4.7, and this was assigned to cluster protonation. The D14H mutant and the wild-type 3Fe-proteins showed an additional pK (both at 5.9) assumed to arise from protonation of the amino acid side chain. With the 4Fe-proteins, there was no dramatic change in the potentials of the wild-type or D14C form, while the pH response of the D14S mutant (pK 4.75) was ascribed to protonation of the serinate. While the ferredoxin variants exhibited a range of thermal stabilities (measured at 80 degrees C, pH 2.5), none of them showed any temperature-dependent transitions (0-80 degrees C) in their reduction potentials, and there was no correlation between the calculated DeltaS degrees' values and the absorbance maximum, reduction potential, or hydrophobicity of residue 14. In contrast, there was a linear correlation between the DeltaH degrees' value and reduction potential. Kinetic analyses were carried out at 80 degrees C using the ferredoxin as either an electron acceptor to pyruvate oxidoreductase (POR) or as an electron donor to ferredoxin:NADP oxidoreductase (FNOR, both from P. furiosus). The data showed that the reduction potential of the ferredoxin, rather than cluster type or the nature of the residue at position 14, appears to be the predominant factor in determining efficiency of electron transfer in both systems. However, compared to all the variants, the reduction potential of WT Fd makes it the most appropriate protein to both accept electrons from POR and donate them to FNOR.
Collapse
Affiliation(s)
- P S Brereton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602-7229, USA
| | | | | | | |
Collapse
|