1
|
Masuzawa Y, Kitazawa M. Xeno-Free Materials for Stabilizing Basic Fibroblast Growth Factor and Enhancing Cell Proliferation in Human Pluripotent Stem Cell Cultures. MATERIALS 2022; 15:ma15103687. [PMID: 35629712 PMCID: PMC9144957 DOI: 10.3390/ma15103687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are widely considered important for developing novel regenerative therapies. A major challenge to the growth and proliferation of iPSCs is the maintenance of their undifferentiated status in xeno- and feeder-free conditions. Basic fibroblast growth factor (bFGF) is known to contribute to the expansion of stem cells; however, bFGF is notoriously heat-labile and easily denatured. Here, we investigate the effects of a series of synthetic sulfated/sulfonated polymers and saccharides on the growth of iPSCs. We observed that these materials effectively prevented the reduction of bFGF levels in iPSC culture media during storage at 37 °C. Some of the tested materials also suppressed heat-induced decline in medium performance and maintained cell proliferation. Our results suggest that these sulfated materials can be used to improve the expansion culture of undifferentiated iPSCs and show the potential of cost effective, chemically defined materials for improvement of medium performance while culturing iPSCs.
Collapse
|
2
|
Synthetic polymers as xeno-free materials for stabilizing basic fibroblast growth factor in human mesenchymal stem cell cultures. Biochem Biophys Rep 2021; 25:100929. [PMID: 33553689 PMCID: PMC7848777 DOI: 10.1016/j.bbrep.2021.100929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/03/2023] Open
Abstract
Series of sulfonated polymers were evaluated as additives in cell culture media. Some of the compounds, such as sulfated polyvinyl alcohol (PVA), prevented denaturation and loss of basic fibroblast growth factor during cell culture and enhanced human mesenchymal stem cell proliferation. These compounds are xeno-free alternatives of heparin, an animal-derived sulfated saccharide, often used as an additive. To the best our knowledge, this study is the first to show that chemically defined synthetic chemicals, such as sulfated polyvinyl alcohol, can be used for this purpose. Basic fibroblast growth factor in stem cell culture medium decreased during culture. Basic fibroblast growth factor concentration was correlated with culture results. Sulfated materials were evaluated to protect basic fibroblast growth factor. Four materials showed protective effect and hence activated cell proliferation.
Collapse
|
3
|
Kato YS, Tanokura M, Kuzuhara T. NMR spectra of PB2 627, the RNA-binding domain in influenza A virus RNA polymerase that contains the pathogenicity factor lysine 627, and improvement of the spectra by small osmolytes. Biochem Biophys Rep 2017; 12:129-134. [PMID: 29090273 PMCID: PMC5645118 DOI: 10.1016/j.bbrep.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022] Open
Abstract
The influenza A virus, which has an RNA genome, requires RNA-dependent RNA polymerase for transcription and replication. The polymerase is comprised of the subunits PA, PB1, and PB2. The C-terminal RNA-binding domain in PB2 contains lysine 627 (PB2 627), which is associated with pathogenicity and host range. However, the structure and molecular mechanism of PB2 627 in solution remain obscure. Here, we investigated PB2 627 in solution by nuclear magnetic resonance (NMR) and detected inhomogeneity in the intensities of backbone amide proton signals due to local fluctuations in structure. To characterize the effects of chemical chaperones on spectral data and improve the data quality, we tested 20 different additives, including L-arginine L-glutamate salt, (L-arginine)2SO4, glycerol, β-octylglucoside, 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, Na2SO4, 1,5-diaminopentane, 1,4-diaminobutane, trehalose, sucrose, glycine, trimethylamine N-oxide, β-alanine, L-α-alanine, hydroxyectoine, betaine, L-proline, and non-detergent sulfobetaine 195, 201, and 256. We evaluated the quality of the resulting spectra by calculating the standard deviation and average of the ratio of signal intensities to noise level of amide peaks, as well as the ratio of the standard deviation to the average. NMR-profile analysis revealed diverse effects of additives on the dynamic properties of PB2 627. Based on such criteria, we found that small osmolytes such as glycine and L-α-alanine reduced structural fluctuations and improved the quality of spectral data, which is likely to facilitate a detailed NMR-based structural analysis. The methodology developed here may also be more generally useful for evaluating the effects of chemical chaperones on the structural integrity of proteins. The NMR spectrum of PB2 627 showed well dispersed signals. Its signal intensity was inhomogeneous, suggesting structural fluctuations. Glycine and L-α-alanine reduced structural fluctuations. Glycine and L-α-alanine improved the quality of spectral data of NMR.
Collapse
Key Words
- CHAPS, 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate
- DTT, dithiothreitol
- HSQC, heteronuclear single quantum coherence
- Influenza A virus
- Irel, ratio of signal intensity to noise level
- NDSB, non-detergent sulfobetaine
- NMR, additive
- NMR, nuclear magnetic resonance
- PB2 627
- PB2 627, C-terminal RNA-binding domain of PB2 containing lysine 627
- RNA polymerase
- S/N, signal-to-noise ratio
- TMAO, trimethylamine N-oxide
Collapse
Affiliation(s)
- Yusuke S Kato
- Institute for Health Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| |
Collapse
|
4
|
Kuwasako K, Nameki N, Tsuda K, Takahashi M, Sato A, Tochio N, Inoue M, Terada T, Kigawa T, Kobayashi N, Shirouzu M, Ito T, Sakamoto T, Wakamatsu K, Güntert P, Takahashi S, Yokoyama S, Muto Y. Solution structure of the first RNA recognition motif domain of human spliceosomal protein SF3b49 and its mode of interaction with a SF3b145 fragment. Protein Sci 2016; 26:280-291. [PMID: 27862552 PMCID: PMC5275738 DOI: 10.1002/pro.3080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 01/17/2023]
Abstract
The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598–631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of β1‐α1‐β2‐β3‐α2‐β4. Furthermore, a docking model based on NOESY measurements suggests that residues 607–616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix–helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull‐down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix–helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145. PDB Code(s): 5GVQ
Collapse
Affiliation(s)
- Kanako Kuwasako
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan.,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kengo Tsuda
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Takahashi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Atsuko Sato
- Department of Chemical & Biological Sciences, Japan Women's University, Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| | - Naoya Tochio
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Makoto Inoue
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takanori Kigawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Naohiro Kobayashi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takuhiro Ito
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Kaori Wakamatsu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Peter Güntert
- Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama, 230-0045, Japan.,Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt, Max-von-Laue-Str, Frankfurt am Main, 60438, Germany
| | - Seizo Takahashi
- Department of Chemical & Biological Sciences, Japan Women's University, Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yutaka Muto
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan.,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
5
|
Wang H, Hosoda K, Ishii T, Arai R, Kohno T, Terawaki SI, Wakamatsu K. Protein stabilizer, NDSB-195, enhances the dynamics of the β4 -α2 loop of ubiquitin. J Pept Sci 2016; 22:174-80. [PMID: 26856691 DOI: 10.1002/psc.2855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Non-detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB-195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB-195 enhances the microsecond-millisecond dynamics of a β4 -α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB-195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained.
Collapse
Affiliation(s)
- Haimei Wang
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuo Hosoda
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Takeshi Ishii
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryo Arai
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Toshiyuki Kohno
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shin-Ichi Terawaki
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kaori Wakamatsu
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
6
|
Mizukoshi Y, Takeuchi K, Arutaki M, Takizawa T, Hanzawa H, Takahashi H, Shimada I. Suppression of problematic compound oligomerization by cosolubilization of nondetergent sulfobetaines. ChemMedChem 2015; 10:736-41. [PMID: 25760302 PMCID: PMC4471626 DOI: 10.1002/cmdc.201500057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/24/2022]
Abstract
Numerous small organic compounds exist in equilibrium among monomers, soluble oligomers, and insoluble aggregates in aqueous solution. Compound aggregation is a major reason for false positives in drug screening, and even soluble oligomers can interfere with structural and biochemical analyses. However, an efficient way to manage the equilibrium of aggregation-prone compounds, especially those involved with soluble oligomers, has not been established. In this study, solution NMR spectroscopy was used as a suitable technique to detect compound oligomers in equilibrium, and it was demonstrated that cosolubilization of nondetergent sulfobetaines (NDSBs) can largely suppress compound oligomerization and aggregation by shifting the equilibrium toward the monomers. The rotational correlation time was obtained from the ratio of the selective and nonselective longitudinal NMR relaxation times, which directly and quantitatively reflected the apparent sizes of the compounds in the equilibrium. The rotational correlation time of the aggregation-prone compound SKF86002 (1 mM) was substantially reduced from 0.31 to 0.23 ns by cosolubilization of 100 mM NDSB195. NDSB cosolubilization allowed us to perform successful structural and biochemical experiments with substantially fewer artifacts, which represents a strategy to directly resolve the problematic oligomerization and aggregation of compounds.
Collapse
Affiliation(s)
- Yumiko Mizukoshi
- Biomedicinal Information Research Center (BIRC) and Molecular Profiling Research Center (Molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064 (Japan); Japan Biological Informatics Consortium (JBIC), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064 (Japan)
| | | | | | | | | | | | | |
Collapse
|
7
|
Pandey KK, Bera S, Korolev S, Campbell M, Yin Z, Aihara H, Grandgenett DP. Rous sarcoma virus synaptic complex capable of concerted integration is kinetically trapped by human immunodeficiency virus integrase strand transfer inhibitors. J Biol Chem 2014; 289:19648-58. [PMID: 24872410 DOI: 10.1074/jbc.m114.573311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We determined conditions to produce milligram quantities of the soluble Rous sarcoma virus (RSV) synaptic complex that is kinetically trapped by HIV strand transfer inhibitors (STIs). Concerted integration catalyzed by RSV integrase (IN) is effectively inhibited by HIV STIs. Optimized assembly of the RSV synaptic complex required IN, a gain-of-function 3'-OH-recessed U3 oligonucleotide, and an STI under specific conditions to maintain solubility of the trapped synaptic complex at 4 °C. A C-terminal truncated IN (1-269 residues) produced a homogeneous population of trapped synaptic complex that eluted at ∼ 151,000 Da upon Superdex 200 size-exclusion chromatography (SEC). Approximately 90% of input IN and DNA are incorporated into the trapped synaptic complex using either the C-terminally truncated IN or wild type IN (1-286 residues). No STI is present in the SEC running buffer suggesting the STI-trapped synaptic complex is kinetically stabilized. The yield of the trapped synaptic complex correlates with the dissociative half-life of the STI observed with HIV IN-DNA complexes. Dolutegravir, MK-2048, and MK-0536 are equally effective, whereas raltegravir is ∼ 70% as effective. Without an STI present in the assembly mixture, no trapped synaptic complex was observed. Fluorescence and mass spectroscopy analyses demonstrated that the STI remains associated with the trapped complex. SEC-multiangle light scattering analyses demonstrated that wild type IN and the C-terminal IN truncation are dimers that acted as precursors to the tetramer. The purified STI-trapped synaptic complex contained a tetramer as shown by cross-linking studies. Structural studies of this three-domain RSV IN in complex with viral DNA may be feasible.
Collapse
Affiliation(s)
| | - Sibes Bera
- From the Institute for Molecular Virology
| | | | - Mary Campbell
- Center for World Health and Medicine, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| | - Zhiqi Yin
- the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hideki Aihara
- the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
8
|
Takahashi H, Yamazaki H, Akanuma S, Kanahara H, Saito T, Chimuro T, Kobayashi T, Ohtani T, Yamamoto K, Sugiyama S, Kobori T. Preparation of Phi29 DNA polymerase free of amplifiable DNA using ethidium monoazide, an ultraviolet-free light-emitting diode lamp and trehalose. PLoS One 2014; 9:e82624. [PMID: 24505243 PMCID: PMC3915000 DOI: 10.1371/journal.pone.0082624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/25/2013] [Indexed: 11/25/2022] Open
Abstract
We previously reported that multiply-primed rolling circle amplification (MRPCA) using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3'-5' exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Nanobiotechnology Laboratory, Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Yamazaki
- Isehara Research Laboratory, Technology & Development Division, Kanto Chemical Co., Inc., Isehara, Kanagawa, Japan
| | - Satoshi Akanuma
- Nanobiotechnology Laboratory, Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hiroko Kanahara
- Nanobiotechnology Laboratory, Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Toshiyuki Saito
- Transcriptome Profiling Group, National Institute of Radiological Sciences, Chiba, Chiba, Japan
| | - Tomoyuki Chimuro
- Isehara Research Laboratory, Technology & Development Division, Kanto Chemical Co., Inc., Isehara, Kanagawa, Japan
| | - Takayoshi Kobayashi
- Bio-Chemical Department, Reagent Division, Kanto Chemical Co., Inc. Tokyo, Japan
| | - Toshio Ohtani
- Nanobiotechnology Laboratory, Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kimiko Yamamoto
- Insect Genome Laboratory, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Shigeru Sugiyama
- Nanobiotechnology Laboratory, Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Toshiro Kobori
- Nanobiotechnology Laboratory, Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Hagihara M, Takei A, Ishii T, Hayashi F, Kubota K, Wakamatsu K, Nameki N. Inhibitory effects of choline-O-sulfate on amyloid formation of human islet amyloid polypeptide. FEBS Open Bio 2012; 2:20-5. [PMID: 23650576 PMCID: PMC3642097 DOI: 10.1016/j.fob.2012.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/11/2012] [Accepted: 02/15/2012] [Indexed: 11/14/2022] Open
Abstract
Choline-O-sulfate (2-(trimethylammonio)ethyl sulfate, COS) is a naturally occurring osmolyte that is synthesized by plants, lichens, algae, fungi, and several bacterial species. We examined the inhibitory effects of COS on amyloid formation of the human islet amyloid polypeptide (hIAPP or amylin) using a thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy and transmission electron microscopy. The results showed that COS suppresses a conformational change of hIAPP from a random coil to a β-sheet structure, resulting in the inhibition of amyloid formation. Comparisons with various structural analogs including carnitine, acetylcholine and non-detergent sulfobetaines (NDSBs) using the ThT fluorescence assay showed that COS is the most effective inhibitor of hIAPP amyloid formation, suggesting that the sulfate group, which is unique to COS, significantly contributes to the inhibition.
Collapse
Key Words
- Aggregation inhibitor
- Amyloid formation
- CD, circular dichroism
- COS, choline-O-sulfate
- Choline-O-sulfate
- HFIP, 1,1,1,3,3,3-hexafluoro-2-propanol
- Islet amyloid polypeptide
- NDSB, non-detergent sulfobetaine
- Osmolyte
- TEM, transmission electron microscopy
- ThT, thioflavin T
- hIAPP, human islet amyloid polypeptide
Collapse
Affiliation(s)
- Mamoru Hagihara
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | | | | | | | | | | | | |
Collapse
|