1
|
Jaiswal N, Raikwal N, Pandey H, Agarwal N, Arora A, Poluri KM, Kumar D. NMR elucidation of monomer-dimer transition and conformational heterogeneity in histone-like DNA binding protein of Helicobacter pylori. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:285-299. [PMID: 29241299 DOI: 10.1002/mrc.4701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
Helicobacter pylori (H. pylori) colonizes under harsh acidic/oxidative stress conditions of human gastrointestinal tract and can survive there for infinitely longer durations of host life. The bacterium expresses several harbinger proteins to facilitate its persistent colonization under such conditions. One such protein in H. pylori is histone-like DNA binding protein (Hup), which in its homo-dimeric form binds to DNA to perform various DNA dependent cellular activities. Further, it also plays an important role in protecting the genomic DNA from oxidative stress and acidic denaturation. Legitimately, if the binding of Hup to DNA is suppressed, it will directly impact on the survival of the bacterium, thus making Hup a potential therapeutic target for developing new anti-H. pylori agents. However, to inhibit the binding of Hup to DNA, it is necessary to gain detailed insights into the molecular and structural basis of Hup-dimerization and its binding mechanism to DNA. As a first step in this direction, we report here the nuclear magnetic resonance (NMR) assignments and structural features of Hup at pH 6.0. The study revealed the occurrence of dynamic equilibrium between its monomer and dimer conformations. The dynamic equilibrium was found to shifting towards dimer both at low temperature and low pH; whereas DNA binding studies evidenced that the protein binds to DNA in its dimeric form. These preliminary investigations correlate very well with the diverse functionality of protein and will form the basis for future studies aiming to develop novel anti-H. pylori agents employing structure-based-rational drug discovery approach.
Collapse
Affiliation(s)
- Nancy Jaiswal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Dr. APJ Abdul Kalam Technical University, IET Campus, Sitapur Road, Lucknow, 226021, Uttar Pradesh, India
| | - Nisha Raikwal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| | - Himanshu Pandey
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Nipanshu Agarwal
- Department of Biotechnology and Centre for Nanotechnology Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Krishna Mohan Poluri
- Department of Biotechnology and Centre for Nanotechnology Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| |
Collapse
|
2
|
Rao Kakita VM, Bopardikar M, Kumar Shukla V, Rachineni K, Ranjan P, Singh JS, Hosur R. An efficient combination of BEST and NUS methods in multidimensional NMR spectroscopy for high throughput analysis of proteins. RSC Adv 2018; 8:17616-17621. [PMID: 35542095 PMCID: PMC9080477 DOI: 10.1039/c8ra00527c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/01/2018] [Indexed: 11/23/2022] Open
Abstract
Application of Non Uniform Sampling (NUS) along with Band-selective Excitation Short-Transient (BEST) NMR experiments has been demonstrated for obtaining the important residue-specific atomic level backbone chemical shift values in short durations of time. This application has been demonstrated with both well-folded (ubiquitin) and unfolded (α-synuclein) proteins alike. With this strategy, the experiments required for determining backbone chemical shifts can be performed very rapidly, i.e., in ∼2 hours of spectrometer time, and this data can be used to calculate the backbone folds of proteins using well established algorithms. This will be of great value for structural proteomic investigations on one hand, where the speed of structure determination is a limiting factor and for application in the study of slow kinetic processes involving proteins, such as fibrillization, on the other hand. Application of NUS along with BEST NMR experiments has been demonstrated for obtaining the important residue-specific atomic level backbone chemical shift values in short durations of time.![]()
Collapse
Affiliation(s)
| | - Mandar Bopardikar
- Department of Chemical Sciences
- Tata Institute of Fundamental Research (TIFR)
- Mumbai 400 005
- India
| | - Vaibhav Kumar Shukla
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Mumbai 400 098
- India
| | - Kavitha Rachineni
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Mumbai 400 098
- India
| | - Priyatosh Ranjan
- Department of Biosciences & Bioengineering
- Indian Institute of Technology-Bombay (IIT-B)
- Mumbai 400076
- India
| | - Jai Shankar Singh
- Department of Biosciences & Bioengineering
- Indian Institute of Technology-Bombay (IIT-B)
- Mumbai 400076
- India
| | - Ramakrishna V. Hosur
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Mumbai 400 098
- India
- Department of Chemical Sciences
| |
Collapse
|
3
|
Malik N, Kumar A. Resonance assignment of disordered protein with repetitive and overlapping sequence using combinatorial approach reveals initial structural propensities and local restrictions in the denatured state. JOURNAL OF BIOMOLECULAR NMR 2016; 66:21-35. [PMID: 27586017 DOI: 10.1007/s10858-016-0054-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
NMR resonance assignment of intrinsically disordered proteins poses a challenge because of the limited dispersion of amide proton chemical shifts. This becomes even more complex with the increase in the size of the system. Residue specific selective labeling/unlabeling experiments have been used to resolve the overlap, but require multiple sample preparations. Here, we demonstrate an assignment strategy requiring only a single sample of uniformly labeled (13)C,(15)N-protein. We have used a combinatorial approach, involving 3D-HNN, CC(CO)NH and 2D-MUSIC, which allowed us to assign a denatured centromeric protein Cse4 of 229 residues. Further, we show that even the less sensitive experiments, when used in an efficient manner can lead to the complete assignment of a complex system without the use of specialized probes in a relatively short time frame. The assignment of the amino acids discloses the presence of local structural propensities even in the denatured state accompanied by restricted motion in certain regions that provides insights into the early folding events of the protein.
Collapse
Affiliation(s)
- Nikita Malik
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashutosh Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
4
|
Kumar D, Raikwal N, Shukla VK, Pandey H, Arora A, Guleria A. Pseudo 5D HN(C)N experiment to facilitate the assignment of backbone resonances in proteins exhibiting high backbone shift degeneracy. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Bellstedt P, Seiboth T, Häfner S, Kutscha H, Ramachandran R, Görlach M. Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets. JOURNAL OF BIOMOLECULAR NMR 2013; 57:65-72. [PMID: 23943084 DOI: 10.1007/s10858-013-9768-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023]
Abstract
NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though heteronuclear through-bond correlation methods are available for that purpose, challenging situations arise in cases where the protein in question only yields samples of limited concentration and/or stability. Here we present a strategy based upon specific individual unlabeling of all 20 standard amino acids to complement standard NMR experiments and to achieve unambiguous backbone assignments for the fast precipitating 23 kDa catalytic domain of human aprataxin of which only incomplete standard NMR data sets could be obtained. Together with the validation of this approach utilizing the protein GB1 as a model, a comprehensive insight into metabolic interconversion ("scrambling") of NH and CO groups in a standard Escherichia coli expression host is provided.
Collapse
Affiliation(s)
- Peter Bellstedt
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B. BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 55:311-21. [PMID: 23435576 DOI: 10.1007/s10858-013-9715-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/15/2013] [Indexed: 05/03/2023]
Abstract
The characterization of the conformational properties of intrinsically disordered proteins (IDPs), and their interaction modes with physiological partners has recently become a major research topic for understanding biological function on the molecular level. Although multidimensional NMR spectroscopy is the technique of choice for the study of IDPs at atomic resolution, the intrinsically low resolution, and the large peak intensity variations often observed in NMR spectra of IDPs call for resolution- and sensitivity-optimized pulse schemes. We present here a set of amide proton-detected 3D BEST-TROSY correlation experiments that yield the required sensitivity and spectral resolution for time-efficient sequential resonance assignment of large IDPs. In addition, we introduce two proline-edited 2D experiments that allow unambiguous identification of residues adjacent to proline that is one of the most abundant amino acids in IDPs. The performance of these experiments, and the advantages of BEST-TROSY pulse schemes are discussed and illustrated for two IDPs of similar length (~270 residues) but with different conformational sampling properties.
Collapse
Affiliation(s)
- Zsofia Solyom
- Institut de Biologie Structurale, Université Grenoble 1, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | |
Collapse
|
7
|
Reddy JG, Hosur RV. Reduced Dimensionality (4,3)D-HN(C)NH for Rapid Assignment of 1HN–15N HSQC Peaks in Proteins: An Analytical Tool for Protein Folding, Proteomics, and Drug Discovery Programs. Anal Chem 2012; 84:10404-10. [DOI: 10.1021/ac302656k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jithender G. Reddy
- Department of Chemical
Sciences, Tata Institute of Fundamental Research, 1-Homi Bhabha Road, Colaba, Mumbai−400005,
India
| | - Ramakrishna V. Hosur
- Department of Chemical
Sciences, Tata Institute of Fundamental Research, 1-Homi Bhabha Road, Colaba, Mumbai−400005,
India
- UM-DAE
Centre for
Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santa Cruz, Mumbai−400098,
India
| |
Collapse
|
8
|
Direct Sequential Hit Strategy for Unambiguous and Accurate Backbone Assignment of 13C/15N Labeled Proteins. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2012. [DOI: 10.1007/s40009-012-0069-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Kumar D, Gautam A, Hosur RV. A unified NMR strategy for high-throughput determination of backbone fold of small proteins. ACTA ACUST UNITED AC 2012; 13:201-12. [DOI: 10.1007/s10969-012-9144-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/18/2012] [Indexed: 11/30/2022]
|
10
|
Kumar D, Borkar A, Hosur RV. Facile backbone (1H, 15N, 13Ca, and 13C') assignment of 13C/15N-labeled proteins using orthogonal projection planes of HNN and HN(C)N experiments and its automation. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:357-363. [PMID: 22508472 DOI: 10.1002/mrc.3801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/22/2012] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
Recently, we introduced an efficient high-throughput protocol for backbone assignment of small folded proteins based on two-dimensional (2D) projections of HN(C)N suite of experiments and its automation [Borkar et al., J. Biomol. NMR 2011, 50(3), 285-297]. This strategy provides complete sequence-specific assignment of backbone ((1)H, (15)N, (13)C(α), and (13)C') resonances in less than a day; thus, it has great implications for high-throughput structural proteomics. However, in cases when such small folded protein exhibits substantial amide (1)H shift degeneracy (typically seen in alpha-helical proteins), the strategy may fail or lead to ambiguities. Another limitation is with respect to the identification of checkpoints from the variants of 2D-hncNH spectrum. For example, a protein with many GG, GA, AA, SS, TS, TT, and TS types of dipeptide stretches along its sequence, thus the identification of NH cross-peak corresponding to second G, A, S, or T becomes difficult. In this backdrop, we present here two improvements to enhance the utility of the proposed high-throughput AUTOmatic Backbone Assignment protocol: (i) use of 2D-hNnH spectrum and its variants that display additional (1)H-(15)N correlations and thus help to resolve ambiguities arising because of amide (1)H shift degeneracy and (ii) optimization of the τ(CN) delay in the 2D-hncNH experiment that, when properly adjusted, is observed to help remove ambiguities in the identification of the checkpoints. These improvements have also been incorporated in the automation program AUTOmatic Backbone Assignment. Finally, the performance of the strategy and the automation has been demonstrated using the chicken SH3 domain protein.
Collapse
Affiliation(s)
- Dinesh Kumar
- Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibareli Road-226014, Lucknow, 400005, India.
| | | | | |
Collapse
|
11
|
Rout MK, Mishra P, Atreya HS, Hosur RV. Reduced dimensionality 3D HNCAN for unambiguous HN, CA and N assignment in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:161-168. [PMID: 22370721 DOI: 10.1016/j.jmr.2012.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/16/2012] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
We present here an improvisation of HNN (Panchal, Bhavesh et al., 2001) called RD 3D HNCAN for backbone (HN, CA and (15)N) assignment in both folded and unfolded proteins. This is a reduced dimensionality experiment which employs CA chemical shifts to improve dispersion. Distinct positive and negative peak patterns of various triplet segments along the polypeptide chain observed in HNN are retained and these provide start and check points for the sequential walk. Because of co-incrementing of CA and (15)N, peaks along one of the dimensions appear at sums and differences of the CA and (15)N chemical shifts. This changes the backbone assignment protocol slightly and we present this in explicit detail. The performance of the experiment has been demonstrated using Ubiquitin and Plasmodium falciparum P2 proteins. The experiment is particularly valuable when two neighboring amino acid residues have nearly identical backbone (15)N chemical shifts.
Collapse
Affiliation(s)
- Manoj Kumar Rout
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400 005, India
| | | | | | | |
Collapse
|
12
|
Kumar D, Hosur RV. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49:575-583. [PMID: 21818779 DOI: 10.1002/mrc.2787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 05/31/2023]
Abstract
A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.
Collapse
Affiliation(s)
- Dinesh Kumar
- Center of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, 1-Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | |
Collapse
|
13
|
Borkar A, Kumar D, Hosur RV. AUTOBA: automation of backbone assignment from HN(C)N suite of experiments. JOURNAL OF BIOMOLECULAR NMR 2011; 50:285-297. [PMID: 21626212 DOI: 10.1007/s10858-011-9518-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 05/12/2011] [Indexed: 05/30/2023]
Abstract
Development of efficient strategies and automation represent important milestones of progress in rapid structure determination efforts in proteomics research. In this context, we present here an efficient algorithm named as AUTOBA (Automatic Backbone Assignment) designed to automate the assignment protocol based on HN(C)N suite of experiments. Depending upon the spectral dispersion, the user can record 2D or 3D versions of the experiments for assignment. The algorithm uses as inputs: (i) protein primary sequence and (ii) peak-lists from user defined HN(C)N suite of experiments. In the end, one gets H(N), (15)N, C(α) and C' assignments (in common BMRB format) for the individual residues along the polypeptide chain. The success of the algorithm has been demonstrated, not only with experimental spectra recorded on two small globular proteins: ubiquitin (76 aa) and M-crystallin (85 aa), but also with simulated spectra of 27 other proteins using assignment data from the BMRB.
Collapse
Affiliation(s)
- Aditi Borkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Colaba, Mumbai, India
| | | | | |
Collapse
|