1
|
Matz M, Pollard M, Gaborieau M, Tratz J, Botha C, Wilhelm M. Enhancing Sensitivity in the Hyphenation of High-Performance Liquid Chromatography to Benchtop Nuclear Magnetic Resonance Spectroscopy at Isocratic and Onflow Conditions. J Phys Chem B 2024; 128:9512-9524. [PMID: 39303100 DOI: 10.1021/acs.jpcb.4c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The onflow hyphenation of high-performance liquid chromatography (HPLC) in adsorption mode with a benchtop 1H nuclear magnetic resonance (NMR) spectrometer is described for the first time. Protonated solvents and isocratic conditions are used. The sensitivity was increased by choosing suitable NMR acquisition parameter as well as optimizing injection parameters and postacquisition data processing methods. With optimized conditions, the limit of detection (LOD) and the limit of quantification (LOQ) were LOD = 0.010 g L-1 and LOQ = 0.031 g L-1 for the methoxy 1H of methyl paraben at 4.07 ppm, LOD = 0.038 g L-1 and LOQ = 0.134 g L-1 for the aromatic 1H of pentyl paraben between 7.00 and 8.50 ppm. These are expressed in injection concentration and are comparable to existing HPLC hyphenation with high-field NMR spectrometers. The analysis of a 2 g L-1 paraben mixture, far below the legal limits for usage in cosmetics, illustrates the applicability of the method. Taking advantage of the spectral resolution, chromatographically overlapping peaks are resolved using analyte-specific NMR elution traces. A methodology is detailed to facilitate the transfer of the optimized method to other (analyte) systems.
Collapse
Affiliation(s)
- Markus Matz
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76131, Germany
| | - Michael Pollard
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76131, Germany
| | - Marianne Gaborieau
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76131, Germany
| | - Johanna Tratz
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76131, Germany
| | - Carlo Botha
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76131, Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76131, Germany
| |
Collapse
|
2
|
Gathungu RM, Kautz R, Kristal BS, Bird SS, Vouros P. The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices. MASS SPECTROMETRY REVIEWS 2020; 39:35-54. [PMID: 30024655 PMCID: PMC6339611 DOI: 10.1002/mas.21575] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/28/2018] [Indexed: 05/12/2023]
Abstract
This review discusses the integration of liquid chromatography (LC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) in the comprehensive analysis of small molecules from complex matrices. We first discuss the steps taken toward making the three technologies compatible, so as to create an efficient analytical platform. The development of online LC-MS-NMR, highlighted by successful applications in the profiling of highly concentrated analytes (LODs 10 μg) is discussed next. This is followed by a detailed overview of the alternative approaches that have been developed to overcome the challenges associated with online LC-MS-NMR that primarily stem from the inherently low sensitivity of NMR. These alternative approaches include the use of stop-flow LC-MS-NMR, loop collection of LC peaks, LC-MS-SPE-NMR, and offline NMR. The potential and limitations of all these approaches is discussed in the context of applications in various fields, including metabolomics and natural product discovery.
Collapse
Affiliation(s)
- Rose M. Gathungu
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Department of Medicine, Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Roger Kautz
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Bruce S. Kristal
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Department of Medicine, Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Paul Vouros
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| |
Collapse
|
3
|
Day IJ. Matrix-assisted DOSY. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:1-18. [PMID: 32130955 DOI: 10.1016/j.pnmrs.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The analysis of mixtures by NMR spectroscopy is challenging. Diffusion-ordered NMR spectroscopy enables a pseudo-separation of species based on differences in their translational diffusion coefficients. Under the right circumstances, this is a powerful technique; however, when molecules diffuse at similar rates separation in the diffusion dimension can be poor. In addition, spectral overlap also limits resolution and can make interpretation challenging. Matrix-assisted diffusion NMR seeks to improve resolution in the diffusion dimension by utilising the differential interaction of components in the mixture with an additive to the solvent. Tuning these matrix-analyte interactions allows the diffusion resolution to be optimised. This review presents the background to matrix-assisted diffusion experiments, surveys the wide range of matrices employed, including chromatographic stationary phases, surfactants and polymers, and demonstrates the current state of the art.
Collapse
Affiliation(s)
- Iain J Day
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK.
| |
Collapse
|
4
|
Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020; 10:E37. [PMID: 31952212 PMCID: PMC7023240 DOI: 10.3390/metabo10010037] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Plant-derived natural products have long been considered a valuable source of lead compounds for drug development. Natural extracts are usually composed of hundreds to thousands of metabolites, whereby the bioactivity of natural extracts can be represented by synergism between several metabolites. However, isolating every single compound from a natural extract is not always possible due to the complex chemistry and presence of most secondary metabolites at very low levels. Metabolomics has emerged in recent years as an indispensable tool for the analysis of thousands of metabolites from crude natural extracts, leading to a paradigm shift in natural products drug research. Analytical methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) are used to comprehensively annotate the constituents of plant natural products for screening, drug discovery as well as for quality control purposes such as those required for phytomedicine. In this review, the current advancements in plant sample preparation, sample measurements, and data analysis are presented alongside a few case studies of the successful applications of these processes in plant natural product drug discovery.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| |
Collapse
|
5
|
Monakhova YB, Mushtakova SP, Kuballa T, Lachenmeier DW. Investigation into the structural composition of hydroalcoholic solutions as basis for the development of multiple suppression pulse sequences for NMR measurement of alcoholic beverages. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:755-759. [PMID: 25139252 DOI: 10.1002/mrc.4129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/11/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
An eight-fold suppression pulse sequence was recently developed to improve sensitivity in (1) H NMR measurements of alcoholic beverages [Magn. Res. Chem. 2011 (49): 734-739]. To ensure that only one combined hydroxyl peak from water and ethanol appears in the spectrum, adjustment to a certain range of ethanol concentrations was required. To explain this observation, the structure of water-ethanol solutions was studied. Hydroalcoholic solutions showed extreme behavior at 25% vol, 46% vol, and 83% vol ethanol according to (1) H NMR experiments. Near-infrared spectroscopy confirmed the occurrence of four significant compounds ('individual' ethanol and water structures as well as two water-ethanol complexes of defined composition - 1 : 1 and 1 : 3). The successful multiple suppression can be achieved for every kind of alcoholic beverage with different alcoholic strengths, when the final ethanol concentration is adjusted to a range between 25% vol and 46% vol (e.g. using dilution or pure ethanol addition). In this optimum region, an individual ethanol peak was not detected, because the 'individual' water structure and the 1 : 1 ethanol-water complex predominate. The nature of molecular association in ethanol-water solutions is essential to elucidate NMR method development for measurement of alcoholic beverages. The presented approach can be used to optimize other NMR suppression protocols for binary water-organic solvent mixtures, where hydrogen bonding plays a dominant role.
Collapse
Affiliation(s)
- Yulia B Monakhova
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187, Karlsruhe, Germany; Bruker Biospin GmbH, Silberstreifen, 76287, Rheinstetten, Germany
| | | | | | | |
Collapse
|
6
|
Seger C, Sturm S, Stuppner H. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques--state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Nat Prod Rep 2013; 30:970-87. [PMID: 23739842 DOI: 10.1039/c3np70015a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current natural product research is unthinkable without the use of high resolution separation techniques as high performance liquid chromatography or capillary electrophoresis (HPLC or CE respectively) combined with mass spectrometers (MS) or nuclear magnetic resonance (NMR) spectrometers. These hyphenated instrumental analysis platforms (CE-MS, HPLC-MS or HPLC-NMR) are valuable tools for natural product de novo identification, as well as the authentication, distribution, and quantification of constituents in biogenic raw materials, natural medicines and biological materials obtained from model organisms, animals and humans. Moreover, metabolic profiling and metabolic fingerprinting applications can be addressed as well as pharmacodynamic and pharmacokinetic issues. This review provides an overview of latest technological developments, discusses the assets and drawbacks of the available hyphenation techniques, and describes typical analytical workflows.
Collapse
Affiliation(s)
- Christoph Seger
- Institute of Pharmacy/Pharmacognosy, CCB-Centrum of Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
7
|
Sturm S, Seger C. Liquid chromatography-nuclear magnetic resonance coupling as alternative to liquid chromatography-mass spectrometry hyphenations: curious option or powerful and complementary routine tool? J Chromatogr A 2012; 1259:50-61. [PMID: 22658656 DOI: 10.1016/j.chroma.2012.05.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 01/22/2023]
Abstract
Combining the most powerful separation techniques, i.e. liquid chromatography (LC) or capillary electrophoresis (CE) with a information rich detection system - the mass spectrometer or the nuclear magnetic resonance (NMR) spectrometer - has been pursued for more than three decades. This compilation shall provide an overview of the advantages and limitations of the LC-NMR hyphenation in the light of its most valued application-the unequivocal analyte identification. Especially the post LC trapping of analytes with an in-line solid phase extraction (SPE) device prior to transferring the analyte of interest to the NMR spectrometer (LC-SPE-NMR) proved to be a robust installation allowing a significant cut-down of the amount of analyte needed for the generation of high quality heteronuclear NMR shift correlation data. Different available technical realizations will be discussed and typical application examples from natural product research and from industrial settings will be given.
Collapse
Affiliation(s)
- Sonja Sturm
- Institute of Pharmacy/Pharmacognosy, CCB - Center of Chemistry and Biomedicine, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|