1
|
Epel B, Kao JPY, Eaton SS, Eaton GR, Halpern HJ. Direct Measurement and Imaging of Redox Status with Electron Paramagnetic Resonance. Antioxid Redox Signal 2024; 40:850-862. [PMID: 36680741 PMCID: PMC11386996 DOI: 10.1089/ars.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Significance: Fundamental to the application of tissue redox status to human health is the quantification and localization of tissue redox abnormalities and oxidative stress and their correlation with the severity and local extent of disease to inform therapy. The centrality of the low-molecular-weight thiol, glutathione, in physiological redox balance has long been appreciated, but direct measurement of tissue thiol status in vivo has not been possible hitherto. Recent advances in instrumentation and molecular probes suggest the feasibility of real-time redox assessment in humans. Recent Advances: Recent studies have demonstrated the feasibility of using low-frequency electron paramagnetic resonance (EPR) techniques for quantitative imaging of redox status in mammalian tissues in vivo. Rapid-scan (RS) EPR spectroscopy and imaging, new disulfide-dinitroxide spin probes, and novel analytic techniques have led to significant advances in direct, quantitative imaging of thiol redox status. Critical Issues: While novel RS EPR imaging coupled with first-generation molecular probes has demonstrated the feasibility of imaging thiol redox status in vivo, further technical advancements are desirable and ongoing. These include developing spin probes that are tailored for specific tissues with response kinetics tuned to the physiological environment. Equally critical are RS instrumentation with higher signal-to-noise ratio and minimal signal distortion, as well as optimized imaging protocols for image acquisition with sparsity adapted to image information content. Future Directions: Quantitative images of tissue glutathione promise to enable acquisition of a general image of mammalian and potentially human tissue health.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Noninvasive Diagnosis of the Mitochondrial Function of Doxorubicin-Induced Cardiomyopathy Using In Vivo Dynamic Nuclear Polarization-Magnetic Resonance Imaging. Antioxidants (Basel) 2022; 11:antiox11081454. [PMID: 35892655 PMCID: PMC9331045 DOI: 10.3390/antiox11081454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Doxorubicin (DOX) induces dose-dependent cardiotoxicity via oxidative stress and abnormal mitochondrial function in the myocardium. Therefore, a noninvasive in vivo imaging procedure for monitoring the redox status of the heart may aid in monitoring diseases and developing treatments. However, an appropriate technique has yet to be developed. In this study, we demonstrate a technique for detecting and visualizing the redox status of the heart using in vivo dynamic nuclear polarization–magnetic resonance imaging (DNP–MRI) with 3-carbamoyl-PROXYL (CmP) as a molecular imaging probe. Male C57BL/6N mice were administered DOX (20 mg/kg) or saline. DNP–MRI clearly showed a slower DNP signal reduction in the DOX group than in the control group. Importantly, the difference in the DNP signal reduction rate between the two groups occurred earlier than that detected by physiological examination or clinical symptoms. In an in vitro experiment, KCN (an inhibitor of complex IV in the mitochondrial electron transport chain) and DOX inhibited the electron paramagnetic resonance change in H9c2 cardiomyocytes, suggesting that the redox metabolism of CmP in the myocardium is mitochondrion-dependent. Therefore, this molecular imaging technique has the potential to monitor the dynamics of redox metabolic changes in DOX-induced cardiomyopathy and facilitate an early diagnosis of this condition.
Collapse
|
3
|
Weaver J, Liu KJ. A Review of Low-Frequency EPR Technology for the Measurement of Brain pO2 and Oxidative Stress. APPLIED MAGNETIC RESONANCE 2021; 52:1379-1394. [PMID: 35340811 PMCID: PMC8945541 DOI: 10.1007/s00723-021-01384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
EPR can uniquely measure paramagnetic species. Although commercial EPR was introduced in 1950s, the early studies were mostly restricted to chemicals in solution or cellular experiments using X-band EPR equipment. Due to its limited penetration (<1 mm), experiments with living animals were almost impossible. To overcome these difficulties, Swartz group, along with several other leaders in field, pioneered the technology of low frequency EPR (e.g., L-band, 1-2 GHz). The development of low frequency EPR and the associated probes have dramatically expanded the application of EPR technology into the biomedical research field, providing answers to important scientific questions by measuring specific parameters that are impossible or very difficult to obtain by other approaches. In this review, which is aimed at highlighting the seminal contribution from Swartz group over the last several decades, we will focus on the development of EPR technology that was designed to deal with the potential challenges arising from conducting EPR spectroscopy in living animals. The second half of the review will be concentrated on the application of low frequency EPR in measuring cerebral tissue pO2 changes and oxidative stress in various physiological and pathophysiological conditions in the brain of animal disease models.
Collapse
Affiliation(s)
- John Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
4
|
Biller JR, McPeak JE. EPR Everywhere. APPLIED MAGNETIC RESONANCE 2021; 52:1113-1139. [PMID: 33519097 PMCID: PMC7826499 DOI: 10.1007/s00723-020-01304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
This review is inspired by the contributions from the University of Denver group to low-field EPR, in honor of Professor Gareth Eaton's 80th birthday. The goal is to capture the spirit of innovation behind the body of work, especially as it pertains to development of new EPR techniques. The spirit of the DU EPR laboratory is one that never sought to limit what an EPR experiment could be, or how it could be applied. The most well-known example of this is the development and recent commercialization of rapid-scan EPR. Both of the Eatons have made it a point to remain knowledgeable on the newest developments in electronics and instrument design. To that end, our review touches on the use of miniaturized electronics and applications of single-board spectrometers based on software-defined radio (SDR) implementations and single-chip voltage-controlled oscillator (VCO) arrays. We also highlight several non-traditional approaches to the EPR experiment such as an EPR spectrometer with a "wand" form factor for analysis of the OxyChip, the EPR-MOUSE which enables non-destructive in situ analysis of many non-conforming samples, and interferometric EPR and frequency swept EPR as alternatives to classical high Q resonant structures.
Collapse
Affiliation(s)
| | - Joseph E. McPeak
- University of Denver, Denver, CO 80210 USA
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPINS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
5
|
Shi Y, Eaton SS, Eaton GR. Rapid-scan EPR imaging of a phantom comprised of species with different linewidths and relaxation times. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106593. [PMID: 31520789 PMCID: PMC6829054 DOI: 10.1016/j.jmr.2019.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
As a demonstration of the application of rapid-scan EPR to imaging at low frequency and magnetic field, a multi-compartment phantom containing six different samples was imaged. The samples were nitroxide radicals, trityl (substituted triarylmethyl) radicals, and the oxygen-sensitive solid lithium phthalocyanine (LiPc), all of which are useful for in vivo imaging. The 2D spectral-spatial image demonstration was performed at 250 MHz, with samples in sealed tubes of various sizes arranged in a 3D-printed plastic holder. Maximum gradients of 10 G/cm gave a spatial resolution of about 0.1 mm for the narrow trityl and LiPc signals and about 1 mm for the nitroxide. The importance of proper selection of resonator bandwidth and scan rate for obtaining accurate linewidth information is demonstrated for a case in which the phantom is composed of species with signal linewidths and relaxation times that differ by more than a factor of 10.
Collapse
Affiliation(s)
- Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA.
| |
Collapse
|
6
|
Tseytlin O, Guggilapu P, Bobko AA, AlAhmad H, Xu X, Epel B, O'Connell R, Hoblitzell EH, Eubank TD, Khramtsov VV, Driesschaert B, Kazkaz E, Tseytlin M. Modular imaging system: Rapid scan EPR at 800 MHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:94-103. [PMID: 31238278 PMCID: PMC6656609 DOI: 10.1016/j.jmr.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/05/2023]
Abstract
An electron paramagnetic resonance (EPR) imaging system has been custom built for use in pre-clinical and, potentially, clinical studies. Commercial standalone modules have been used in the design that are MATLAB-controlled. The imaging system combines digital and analog technologies. It was designed to achieve maximum flexibility and versatility and to perform standard and novel user-defined experiments. This design goal is achieved by frequency mixing of an arbitrary waveform generator (AWG) output at the intermediate frequency (IF) with a constant source frequency (SF). Low noise SF at 250, 750, and 1000 MHz are available in the system. A wide range of frequencies from near-baseband to L-band can be generated as a result. Two-stage downconversion at the signal detection side is implemented that enables multi-frequency EPR capability. In the first stage, the signal frequency is converted to IF. A novel AWG-enabled digital auto-frequency control method that operates at IF is described that is used for automatic resonator tuning. Quadrature baseband EPR signal is generated in the second downconversion step. The semi-digital approach of mixing low-noise frequency sources with an AWG permits generation of arbitrary excitation patterns that include but are not limited to frequency sweeps for resonator tuning and matching, continuous-wave, and pulse sequences. Presented in this paper is the demonstration of rapid scan (RS) EPR imaging implemented at 800 MHz. Generation of stable magnetic scan waveforms is critical for the RS method. A digital automatic scan control (DASC) system was developed for sinusoidal magnetic field scans. DASC permits tight control of both amplitude and phase of the scans. A surface loop resonator was developed using 3D printing technology. RS EPR imaging system was validated using sample phantoms. In vivo imaging of a breast cancer mouse model is demonstrated.
Collapse
Affiliation(s)
- Oxana Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Priyaankadevi Guggilapu
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Andrey A Bobko
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Hussien AlAhmad
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Industrial & Management Systems Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xuan Xu
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Boris Epel
- Center for EPR Imaging In Vivo Physiology, University of Chicago, IL 60637, USA
| | - Ryan O'Connell
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Valery V Khramtsov
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Eiad Kazkaz
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Mark Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
7
|
Buchanan LA, Rinard GA, Quine RW, Eaton SS, Eaton GR. Tabletop 700 MHz electron paramagnetic resonance imaging spectrometer. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2018; 48B:e21384. [PMID: 30804714 PMCID: PMC6386469 DOI: 10.1002/cmr.b.21384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/11/2018] [Indexed: 06/05/2023]
Abstract
Low frequency electron paramagnetic resonance imaging is a powerful tool to non-invasively measure the physiological status of tumors. Here, we report on the design and functionality of a rapid scan and pulse table-top imaging spectrometer based around an arbitrary waveform generator and 25mm cross-loop resonator operating at 700 MHz. Two and four-dimensional rapid scan spectral-spatial images are presented. This table-top imager is a prototype for future pre-clinical imagers.
Collapse
Affiliation(s)
- Laura A. Buchanan
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - George A. Rinard
- School of Engineering and Computer Science and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Richard W. Quine
- School of Engineering and Computer Science and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| |
Collapse
|
8
|
Eaton SS, Woodcock LB, Eaton GR. Continuous wave electron paramagnetic resonance of nitroxide biradicals in fluid solution. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2018; 47A:e21426. [PMID: 31548835 PMCID: PMC6756774 DOI: 10.1002/cmr.a.21426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nitroxide biradicals have been prepared with electron-electron spin-spin exchange interaction, J, ranging from weak to very strong. EPR spectra of these biradicals in fluid solution depend on the ratio of J to the nitrogen hyperfine coupling, AN, and the rates of interconversion between conformations with different values of J. For relatively rigid biradicals EPR spectra can be simulated as the superposition of AB splitting patterns arising from different combinations of nitrogen nuclear spin states. For more flexible biradicals spectra can be simulated with a Liouville representation of the dynamics that interconvert conformations with different values of J on the EPR timescale. Analysis of spectra, factors that impact J, and examples of applications to chemical and biophysical problems are discussed.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| |
Collapse
|
9
|
Eaton SS, Woodcock LB, Eaton GR. Continuous wave electron paramagnetic resonance of nitroxide biradicals in fluid solution. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2018; 47A:e21426. [PMID: 31548835 DOI: 10.1002/cmr.a.21246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nitroxide biradicals have been prepared with electron-electron spin-spin exchange interaction, J, ranging from weak to very strong. EPR spectra of these biradicals in fluid solution depend on the ratio of J to the nitrogen hyperfine coupling, AN, and the rates of interconversion between conformations with different values of J. For relatively rigid biradicals EPR spectra can be simulated as the superposition of AB splitting patterns arising from different combinations of nitrogen nuclear spin states. For more flexible biradicals spectra can be simulated with a Liouville representation of the dynamics that interconvert conformations with different values of J on the EPR timescale. Analysis of spectra, factors that impact J, and examples of applications to chemical and biophysical problems are discussed.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| |
Collapse
|
10
|
Rinard GA, Quine RW, Buchanan LA, Eaton SS, Eaton GR, Epel B, Sundramoorthy SV, Halpern HJ. Resonators for In Vivo Imaging: Practical Experience. APPLIED MAGNETIC RESONANCE 2017; 48:1227-1247. [PMID: 29391664 PMCID: PMC5788320 DOI: 10.1007/s00723-017-0947-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Resonators for preclinical electron paramagnetic resonance imaging have been designed primarily for rodents and rabbits and have internal diameters between 16 and 51 mm. Lumped circuit resonators include loop-gap, Alderman-Grant, and saddle coil topologies and surface coils. Bimodal resonators are useful for isolating the detected signal from incident power and reducing dead time in pulse experiments. Resonators for continuous wave, rapid scan, and pulse experiments are described. Experience at the University of Chicago and University of Denver in design of resonators for in vivo imaging is summarized.
Collapse
Affiliation(s)
- George A Rinard
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Richard W Quine
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Laura A Buchanan
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Gareth R Eaton
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Boris Epel
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Subramanian V Sundramoorthy
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Howard J Halpern
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| |
Collapse
|
11
|
Komarov DA, Hirata H. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:44-50. [PMID: 28549338 DOI: 10.1016/j.jmr.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm.
Collapse
Affiliation(s)
- Denis A Komarov
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan.
| |
Collapse
|
12
|
Tseytlin M. Full Cycle Rapid Scan EPR Deconvolution Algorithm. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:272-278. [PMID: 28666168 PMCID: PMC5568913 DOI: 10.1016/j.jmr.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 05/12/2023]
Abstract
Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan.
Collapse
Affiliation(s)
- Mark Tseytlin
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
13
|
Eaton SS, Shi Y, Woodcock L, Buchanan LA, McPeak J, Quine RW, Rinard GA, Epel B, Halpern HJ, Eaton GR. Rapid-scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:140-148. [PMID: 28579099 PMCID: PMC5523658 DOI: 10.1016/j.jmr.2017.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/12/2023]
Abstract
In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Yilin Shi
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Lukas Woodcock
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Laura A Buchanan
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Joseph McPeak
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Richard W Quine
- School of Engineering and Computer Science and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - George A Rinard
- School of Engineering and Computer Science and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Boris Epel
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States.
| |
Collapse
|
14
|
Abstract
Molecular oxygen (O2) is essential to brain function and mechanisms necessary to regulate variations in delivery or utilization of O2 are crucial to support normal brain homeostasis, physiology and energy metabolism. Any imbalance in cerebral tissue partial pressure of O2 (pO2) levels may lead to pathophysiological complications including increased reactive O2 species generation leading to oxidative stress when tissue O2 level is too high or too low. Accordingly, the need for oximetry methods, which assess cerebral pO2in vivo and in real time, is imperative to understand the role of O2 in various metabolic and disease states, including the effects of treatment and therapy options. In this review, we provide a brief overview of the common in vivo oximetry methodologies for measuring cerebral pO2. We discuss the advantages and limitations of oximetry methodologies to measure cerebral pO2in vivo followed by a more in-depth review of electron paramagnetic resonance oximetry spectroscopy and imaging using several examples of current electron paramagnetic resonance oximetry applications in the brain.
Collapse
Affiliation(s)
- John M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
15
|
Eto H, Tsuji G, Chiba T, Furue M, Hyodo F. Non-invasive evaluation of atopic dermatitis based on redox status using in vivo dynamic nuclear polarization magnetic resonance imaging. Free Radic Biol Med 2017; 103:209-215. [PMID: 28041828 DOI: 10.1016/j.freeradbiomed.2016.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/28/2016] [Indexed: 11/29/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory condition with complex etiology, including genetic, environmental and immunologic factors. Redox imbalance caused by excessive oxidative stress has been shown to mediate disease activity of AD. Currently, an imaging technique that can monitor the redox status of the skin in vivo has not yet been developed. Consequently, we have established such a technique that can detect and visualize the redox status of the skin using in vivo dynamic nuclear polarization magnetic resonance imaging (DNP-MRI). To evaluate this technique, we utilized an AD mouse model that was generated by repeated topical application of mite antigen in NC/Nga mice. We imaged alterations in redox balance of the resulting AD skin lesions of the mice. Using in vivo DNP-MRI and non-toxic nitroxyl radicals to visualize free radicals in vivo, we revealed that AD skin lesions demonstrated more rapid decay rates of image intensity enhancement than normal skin, indicating that our technique can monitor excessive oxidative stress occurring in AD skin lesions. Therefore, this technique has the potential to provide a novel approach for evaluating disease activity of inflammatory skin diseases, including AD, from the view point of altered redox status.
Collapse
Affiliation(s)
- Hinako Eto
- Innovation Center for Medical Redox Navigation, Kyushu University, Japan
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Japan
| | - Takahito Chiba
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Japan
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University, Japan.
| |
Collapse
|
16
|
Biller JR, Mitchell DG, Tseytlin M, Elajaili H, Rinard GA, Quine RW, Eaton SS, Eaton GR. Rapid Scan Electron Paramagnetic Resonance Opens New Avenues for Imaging Physiologically Important Parameters In Vivo. J Vis Exp 2016. [PMID: 27768025 DOI: 10.3791/54068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We demonstrate a superior method of 2D spectral-spatial imaging of stable radical reporter molecules at 250 MHz using rapid-scan electron-paramagnetic-resonance (RS-EPR), which can provide quantitative information under in vivo conditions on oxygen concentration, pH, redox status and concentration of signaling molecules (i.e., OH•, NO•). The RS-EPR technique has a higher sensitivity, improved spatial resolution (1 mm), and shorter acquisition time in comparison to the standard continuous wave (CW) technique. A variety of phantom configurations have been tested, with spatial resolution varying from 1 to 6 mm, and spectral width of the reporter molecules ranging from 16 µT (160 mG) to 5 mT (50 G). A cross-loop bimodal resonator decouples excitation and detection, reducing the noise, while the rapid scan effect allows more power to be input to the spin system before saturation, increasing the EPR signal. This leads to a substantially higher signal-to-noise ratio than in conventional CW EPR experiments.
Collapse
Affiliation(s)
- Joshua R Biller
- Department of Chemistry and Biochemistry, University of Denver; Magnetic Imaging Group, Applied Physics Division, Physical Measurements Laboratory, National Institute of Standards and Technology
| | | | - Mark Tseytlin
- Department of Radiology, Geisel School of Medicine, Dartmouth University; Department of Biochemistry, West Virginia University
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver
| | - George A Rinard
- Department of Electrical and Computer Engineering, University of Denver
| | | | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver;
| |
Collapse
|
17
|
Shi Y, Rinard GA, Quine RW, Eaton SS, Eaton GR. Rapid scan electron paramagnetic resonance at 1.0 GHz of defect centers in γ-irradiated organic solids. RADIAT MEAS 2016; 85:57-63. [PMID: 26834505 DOI: 10.1016/j.radmeas.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The radicals in six 60Co γ-irradiated solids: malonic acid, glycylglycine, 2,6 di-t-butyl 4-methyl phenol, L-alanine, dimethyl malonic acid, and 2-amino isobutyric acid, were studied by rapid scan electron paramagnetic resonance at L-band (1.04 GHz) using a customized Bruker Elexsys spectrometer and a locally-designed dielectric resonator. Sinusoidal scans with widths up to 18.2 mT were generated with the recently described coil driver and Litz wire coils. Power saturation curves showed that the rapid scan signals saturated at higher powers than did conventional continuous wave signals. The rapid scan data were deconvolved and background subtracted to obtain absorption spectra. For the same data acquisition time the signal-to-noise for the absorption spectra obtained in rapid scans were 23 to 37 times higher than for first-derivative spectra obtained by conventional continuous wave electron paramagnetic resonance.
Collapse
Affiliation(s)
- Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - George A Rinard
- School of Engineering and Computer Science, University of Denver, Denver, CO 80208
| | - Richard W Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80208
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| |
Collapse
|
18
|
Elajaili H, Biller JR, Rosen GM, Kao JPY, Tseytlin M, Buchanan LA, Rinard GA, Quine RW, McPeak J, Shi Y, Eaton SS, Eaton GR. Imaging disulfide dinitroxides at 250 MHz to monitor thiol redox status. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:77-82. [PMID: 26415686 PMCID: PMC4731354 DOI: 10.1016/j.jmr.2015.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 05/12/2023]
Abstract
Measurement of thiol-disulfide redox status is crucial for characterization of tumor physiology. The electron paramagnetic resonance (EPR) spectra of disulfide-linked dinitroxides are readily distinguished from those of the corresponding monoradicals that are formed by cleavage of the disulfide linkage by free thiols. EPR spectra can thus be used to monitor the rate of cleavage and the thiol redox status. EPR spectra of (1)H,(14)N- and (2)H,(15)N-disulfide dinitroxides and the corresponding monoradicals resulting from cleavage by glutathione have been characterized at 250 MHz, 1.04 GHz, and 9 GHz and imaged by rapid-scan EPR at 250 MHz.
Collapse
Affiliation(s)
- Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Joshua R Biller
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Gerald M Rosen
- Department of Pharmaceutical Sciences and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland, Baltimore, MD 21201, United States
| | - Mark Tseytlin
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Laura A Buchanan
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - George A Rinard
- School of Engineering and Computer Science, University of Denver, Denver, CO 80208, United States
| | - Richard W Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80208, United States
| | - Joseph McPeak
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States.
| |
Collapse
|
19
|
Abstract
Rapid-scan electron paramagnetic resonance is based on continuous direct detection of the spin response as the magnetic field is scanned upfield and downfield through resonance thousands of times per second. The method provides improved signal-to-noise for a wide range of samples, including rapidly tumbling and immobilized radicals. This chapter provides an introduction to the method and practical examples of implementation for organic radicals.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| |
Collapse
|
20
|
Spitzbarth M, Drescher M. Simultaneous iterative reconstruction technique software for spectral-spatial EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:79-88. [PMID: 26102454 DOI: 10.1016/j.jmr.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 05/13/2023]
Abstract
Continuous wave electron paramagnetic resonance imaging (EPRI) experiments often suffer from low signal to noise ratio. The increase in spectrometer time required to acquire data of sufficient quality to allow further analysis can be counteracted in part by more processing effort during the image reconstruction step. We suggest a simultaneous iterative reconstruction algorithm (SIRT) for reconstruction of continuous wave EPRI experimental data as an alternative to the widely applied filtered back projection algorithm (FBP). We show experimental and numerical test data of 2d spatial images and spectral-spatial images. We find that for low signal to noise ratio and spectral-spatial images that are limited by the maximum magnetic field gradient strength SIRT is more suitable than FBP.
Collapse
Affiliation(s)
- Martin Spitzbarth
- University of Konstanz, Department of Chemistry, 78457 Konstanz, Germany
| | - Malte Drescher
- University of Konstanz, Department of Chemistry, 78457 Konstanz, Germany.
| |
Collapse
|
21
|
Affiliation(s)
- Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Shinji Ito
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University
| |
Collapse
|
22
|
Elajaili HB, Biller JR, Tseitlin M, Dhimitruka I, Khramtsov VV, Eaton SS, Eaton GR. Electron spin relaxation times and rapid scan EPR imaging of pH-sensitive amino-substituted trityl radicals. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:280-4. [PMID: 25504559 PMCID: PMC4374029 DOI: 10.1002/mrc.4193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/16/2014] [Accepted: 11/03/2014] [Indexed: 05/26/2023]
Abstract
Carboxy-substituted trityl (triarylmethyl) radicals are valuable in vivo probes because of their stability, narrow lines, and sensitivity of their spectroscopic properties to oxygen. Amino-substituted trityl radicals have the potential to monitor pH in vivo, and the suitability for this application depends on spectral properties. Electron spin relaxation times T1 and T2 were measured at X-band for the protonated and deprotonated forms of two amino-substituted triarylmethyl radicals. Comparison with relaxation times for carboxy-substituted triarylmethyl radicals shows that T1 exhibits little dependence on protonation or the nature of the substituent, which makes it useful for measuring O2 concentration, independent of pH. Insensitivity of T1 to changes in substituents is consistent with the assignment of the dominant contribution to spin lattice relaxation as a local mode that involves primarily atoms in the carbon and sulfur core. Values of T2 vary substantially with pH and the nature of the aryl group substituent, reflecting a range of dynamic processes. The narrow spectral widths for the amino-substituted triarylmethyl radicals facilitate spectral-spatial rapid scan electron paramagnetic resonance imaging, which was demonstrated with a phantom. The dependence of hyperfine splittings patterns on pH is revealed in spectral slices through the image.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Biller JR, Tseitlin M, Mitchell DG, Yu Z, Buchanan LA, Elajaili H, Rosen GM, Kao JPY, Eaton SS, Eaton GR. Improved sensitivity for imaging spin trapped hydroxyl radical at 250 MHz. Chemphyschem 2015; 16:528-31. [PMID: 25488257 PMCID: PMC4336543 DOI: 10.1002/cphc.201402835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 11/09/2022]
Abstract
Radicals, including hydroxyl, superoxide, and nitric oxide, play key signaling roles in vivo. Reaction of these free radicals with a spin trap affords more stable paramagnetic nitroxides, but concentrations in vivo still are so low that detection by electron paramagnetic resonance (EPR) is challenging. Three innovative enabling technologies have been combined to substantially improve sensitivity for imaging spin-trapped radicals at 250 MHz. 1) Spin-trapped adducts of BMPO have lifetimes that are long enough to make imaging by EPR at 250 MHz feasible. 2) The signal-to-noise ratio of rapid-scan EPR is substantially higher than for conventional continuous-wave EPR. 3) An improved algorithm permits image reconstruction with a spectral dimension that encompasses the full 50 G spectrum of the BMPO-OH spin adduct without requiring the wide sweeps that would be needed for filtered backprojection. A 2D spectral-spatial image is shown for a phantom containing ca. 5 μM BMPO-OH.
Collapse
Affiliation(s)
- Joshua R. Biller
- Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 USA
| | - Mark Tseitlin
- Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 USA
| | - Deborah G. Mitchell
- Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 USA
| | - Zhelin Yu
- Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 USA
| | - Laura A. Buchanan
- Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 USA
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 USA
| | - Gerald M. Rosen
- Department of Pharmaceutical Sciences, Center for EPR Imaging In Vivo Physiology, and Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201, United States
| | - Joseph P. Y. Kao
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 USA
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 USA
| |
Collapse
|
24
|
Utsumi H, Hyodo F. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI. Methods Enzymol 2015; 564:553-71. [DOI: 10.1016/bs.mie.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Tseitlin M, Biller JR, Elajaili H, Khramtsov VV, Dhimitruka I, Eaton GR, Eaton SS. New spectral-spatial imaging algorithm for full EPR spectra of multiline nitroxides and pH sensitive trityl radicals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 245:150-5. [PMID: 25058914 PMCID: PMC4134677 DOI: 10.1016/j.jmr.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 05/13/2023]
Abstract
An algorithm is derived and demonstrated that reconstructs an EPR spectral-spatial image from projections with arbitrarily selected gradients. This approach permits imaging wide spectra without the use of the very large sweep widths and gradients that would be required for spectral-spatial imaging with filtered back projection reconstruction. Each projection is defined as the sum of contributions at the set of locations in the object. At each location gradients shift the spectra in the magnetic field domain, which is equivalent to a phase change in the Fourier-conjugate frequency domain. This permits solution of the problem in the frequency domain. The method was demonstrated for 2D images of phantoms consisting of (i) two tubes containing (14)N and (15)N nitroxide and (ii) two tubes containing a pH sensitive trityl radical at pH 7.0 and 7.2. In each case spectral slices through the image agree well with the full spectra obtained in the absence of gradient.
Collapse
Affiliation(s)
- Mark Tseitlin
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Joshua R Biller
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Valery V Khramtsov
- Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ilirian Dhimitruka
- Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA.
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
26
|
Hyodo F, Ito S, Yasukawa K, Kobayashi R, Utsumi H. Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging. Anal Chem 2014; 86:7234-8. [PMID: 25036767 DOI: 10.1021/ac502150x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.
Collapse
Affiliation(s)
- Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|