1
|
Simion A, Ernst M, Filip C. Improved heteronuclear decoupling performance under fast MAS by Slightly Desynchronized Phase Alternated Cycles (SDPACs). J Chem Phys 2025; 162:164106. [PMID: 40265638 DOI: 10.1063/5.0259593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
A new version of the recently introduced Rotor-Synchronized Phase-Alternated Cycle (ROSPAC) heteronuclear decoupling pulse sequence [Simion et al., J. Chem. Phys. 157, 014202 (2022)] is proposed, where the delay between the pulses is not perfectly rotor synchronized, dubbed slightly desynchronized phase alternated cycles. Its efficiency in terms of the spectral line's intensity and robustness toward 1H offset and flip angle is analyzed by experimental measurements at 100 kHz magic-angle spinning and theoretically explored by using a generalized theoretical framework based on Floquet theory. The best decoupling was found for a delay between the pulses that has a deviation of about 10% from the perfect synchronization condition, with an enhancement of the signal's intensity of up to 20% compared to the original ROSPAC sequence.
Collapse
Affiliation(s)
- Andrea Simion
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Claudiu Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Garg R, DeZonia B, Paterson AL, Rienstra CM. Low power supercycled TPPM decoupling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107726. [PMID: 38991267 PMCID: PMC11364148 DOI: 10.1016/j.jmr.2024.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
Improving the spectral sensitivity and resolution of biological solids is one of the long-standing problems in nuclear magnetic resonance (NMR) spectroscopy. In this report, we introduce low-power supercycled variants of two-pulse phase-modulated (TPPM) sequence for heteronuclear decoupling. The utility of the sequence is shown by improvements in the transverse relaxation time of observed nuclei (with 1H decoupling) with its application to different samples (uniformly 13C, 15N, 2H-labeled GB1 back-exchanged with 25% H2O and 75% D2O, uniformly 13C, 15N, 2H-labeled human derived Asyn fibril back-exchanged with 100% H2O and uniformly 13C, 15N -labeled human derived Asyn fibril) at fast MAS using low radiofrequency (RF) fields. To understand the effect of spinning speed, the transverse relaxation time is monitored under different spinning frequencies. In comparison to existing heteronuclear decoupling sequences, the supercycled TPPM (sTPPM) sequence significantly improves the spectral sensitivity and resolution and is robust towards B1 inhomogeneity and decoupler offset.
Collapse
Affiliation(s)
- Rajat Garg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Barry DeZonia
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Alexander L Paterson
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Chad M Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States; National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, 53706, United States; Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53715, United States.
| |
Collapse
|
3
|
Simion A, Schubeis T, Le Marchand T, Vasilescu M, Pintacuda G, Lesage A, Filip C. Heteronuclear decoupling with Rotor-Synchronized Phase-Alternated Cycles. J Chem Phys 2022; 157:014202. [DOI: 10.1063/5.0098135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new heteronuclear decoupling pulse sequence is introduced, dubbed ROtor-Synchronized Phase-Alternated Cycles (ROSPAC). It is based on a partial refocusing of the coherences (spin operator products, or cross-terms)1,2 responsible for transverse spin-polarization dephasing, on the irradiation of a large pattern of radio-frequencies, and on a significant minimization of the cross-effects implying 1H chemical-shift anisotropy. Decoupling efficiency is analyzed by numerical simulations and experiments, and compared to that of established decoupling sequences (swept-frequency TPPM, TPPM, SPINAL, rCWApa, and RS-HEPT). It was found that ROSPAC offers good 1H offset robustness for a large range of chemical shifts and low radio-frequency (RF) powers, and performs very well in the ultra-fast MAS regime, where it is almost independent from RF power and permits it to avoid rotary-resonance recoupling conditions ( ). It has the advantage that only the pulse lengths require optimization, and has a low duty cycle in the pulsed decoupling regime. The efficiency of the decoupling sequence is demonstrated on a model microcrystalline sample of the model protein domain GB1 at 100 kHz MAS at 18.8 T.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Lesage
- Laboratoire de Stereochimie, Ecole Normale Superieure, FRANCE
| | - Claudiu Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, Romania
| |
Collapse
|
4
|
Ivanov KL, Mote KR, Ernst M, Equbal A, Madhu PK. Floquet theory in magnetic resonance: Formalism and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:17-58. [PMID: 34852924 DOI: 10.1016/j.pnmrs.2021.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Floquet theory is an elegant mathematical formalism originally developed to solve time-dependent differential equations. Besides other fields, it has found applications in optical spectroscopy and nuclear magnetic resonance (NMR). This review attempts to give a perspective of the Floquet formalism as applied in NMR and shows how it allows one to solve various problems with a focus on solid-state NMR. We include both matrix- and operator-based approaches. We discuss different problems where the Hamiltonian changes with time in a periodic way. Such situations occur, for example, in solid-state NMR experiments where the time dependence of the Hamiltonian originates either from magic-angle spinning or from the application of amplitude- or phase-modulated radiofrequency fields, or from both. Specific cases include multiple-quantum and multiple-frequency excitation schemes. In all these cases, Floquet analysis allows one to define an effective Hamiltonian and, moreover, to treat cases that cannot be described by the more popularly used and simpler-looking average Hamiltonian theory based on the Magnus expansion. An important example is given by spin dynamics originating from multiple-quantum phenomena (level crossings). We show that the Floquet formalism is a very general approach for solving diverse problems in spectroscopy.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomographic Center, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russia
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500046, India
| | - Matthias Ernst
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Perunthiruthy K Madhu
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
5
|
Garg R, Ramachandran R. A theoretical perspective on the suitability of bimodal Floquet theory in the description of heteronuclear decoupling in solids. J Chem Phys 2020; 153:034105. [DOI: 10.1063/5.0012894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rajat Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India
| | - Ramesh Ramachandran
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India
| |
Collapse
|
6
|
Kouvatas C, Kanwal N, Trebosc J, Roiland C, Delevoye L, Ashbrook SE, Le Fur E, Le Pollès L. Rationalization of solid-state NMR multi-pulse decoupling strategies: Coupling of spin I = ½ and half-integer quadrupolar nuclei. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:48-56. [PMID: 31004984 DOI: 10.1016/j.jmr.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
In this paper we undertake a study of the decoupling efficiency of the Multiple-Pulse (MP) scheme, and a rationalization of its parameterization and of the choice of instrumental set up. This decoupling scheme is known to remove the broadening of spin-1/2 spectra I, produced by the heteronuclear scalar interaction with a half-integer quadrupolar nucleus S, without reintroducing heteronuclear dipolar interaction. The resulting resolution enhancement depends on the set-up of the length of the series of pulses and delays of the MP, and some intrinsic material and instrumental parameters. Firstly through a numerical approach, this study investigates the influence of the main intrinsic material parameters (heteronuclear dipolar and J coupling, quadrupolar interaction, spin nature) and instrumental parameters (spinning rate, pulse field strength) on efficiency and resolution enhancement of the scalar decoupling scheme. A guideline is then proposed to obtain quickly and easily the best resolution enhancement via the rationalization of the instrumental and parameter set up. It is then illustrated and tested through experimental data, probing the efficiency of MP-decoupling set up using this guideline. Various spin systems were tested (31P-51V in VOPO4, 31P-93Nb in NbOPO4, 119Sn-17O in Y2Sn2O7), combined with simulations results.
Collapse
Affiliation(s)
- Cassandre Kouvatas
- Ecole Nationale Supérieure de Chimie de Rennes, UMR6226, « Institut des Sciences Chimiques de Rennes », 11 allée de Beaulieu, CS 50837, 35708, France.
| | - Nasima Kanwal
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | - Julien Trebosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, INRA, Centrale Lille, ENSCL, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Claire Roiland
- Ecole Nationale Supérieure de Chimie de Rennes, UMR6226, « Institut des Sciences Chimiques de Rennes », 11 allée de Beaulieu, CS 50837, 35708, France
| | - Laurent Delevoye
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sharon E Ashbrook
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | - Eric Le Fur
- Ecole Nationale Supérieure de Chimie de Rennes, UMR6226, « Institut des Sciences Chimiques de Rennes », 11 allée de Beaulieu, CS 50837, 35708, France
| | - Laurent Le Pollès
- Ecole Nationale Supérieure de Chimie de Rennes, UMR6226, « Institut des Sciences Chimiques de Rennes », 11 allée de Beaulieu, CS 50837, 35708, France
| |
Collapse
|
7
|
Jain MG, Sreedevi KN, Equbal A, Madhu PK, Agarwal V. Refocusing pulses: A strategy to improve efficiency of phase-modulated heteronuclear decoupling schemes in MAS solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 284:59-65. [PMID: 28961478 DOI: 10.1016/j.jmr.2017.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/04/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
The strategy of using π pulses in conjunction with continuous-wave radio-frequency fields to refocus spin interactions has lead to robust and efficient family of heteronuclear decoupling schemes in magic-angle spinning solid-state NMR, denoted as, rCW schemes. Here, we investigate the generality of the application of such refocussing pulses in other phase-modulated decoupling schemes, notably the super-cycled XiX decoupling. XiX is a commonly used heteronuclear decoupling scheme under conditions of fast MAS and low-amplitude radio-frequency irradiation. The refocussing of interactions is achieved by inserting π pulses with a phase of 135° in the supercycled XiX scheme. The refocussed XiX, rXiX, scheme has improved decoupling efficiency, better offset tolerance, and easier experimental setup compared to the XiX scheme.
Collapse
Affiliation(s)
- Mukul G Jain
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 017, India
| | - K N Sreedevi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 017, India
| | - Asif Equbal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 017, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 017, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 017, India.
| |
Collapse
|
8
|
Tan KO, Agarwal V, Meier BH, Ernst M. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance. J Chem Phys 2017; 145:094201. [PMID: 27608994 DOI: 10.1063/1.4961909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.
Collapse
Affiliation(s)
- Kong Ooi Tan
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Vipin Agarwal
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Equbal A, Shankar R, Leskes M, Vega S, Nielsen NC, Madhu PK. Significance of symmetry in the nuclear spin Hamiltonian for efficient heteronuclear dipolar decoupling in solid-state NMR: A Floquet description of supercycled rCW schemes. J Chem Phys 2017; 146:104202. [PMID: 28298092 DOI: 10.1063/1.4977738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.
Collapse
Affiliation(s)
- Asif Equbal
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ravi Shankar
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Michal Leskes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shimon Vega
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
10
|
Equbal A, Madhu PK, Meier BH, Nielsen NC, Ernst M, Agarwal V. Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR. J Chem Phys 2017; 146:084202. [DOI: 10.1063/1.4976997] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Asif Equbal
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
- Center for Insoluble Protein Structures (inSpin) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - P. K. Madhu
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Beat H. Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Niels Chr. Nielsen
- Center for Insoluble Protein Structures (inSpin) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
11
|
Frantsuzov I, Vasa SK, Ernst M, Brown SP, Zorin V, Kentgens APM, Hodgkinson P. Rationalising Heteronuclear Decoupling in Refocussing Applications of Solid-State NMR Spectroscopy. Chemphyschem 2017; 18:394-405. [PMID: 28111874 PMCID: PMC5396389 DOI: 10.1002/cphc.201601003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Factors affecting the performance of 1 H heteronuclear decoupling sequences for magic-angle spinning (MAS) NMR spectroscopy of organic solids are explored, as observed by time constants for the decay of nuclear magnetisation under a spin-echo (T2' ). By using a common protocol over a wide range of experimental conditions, including very high magnetic fields and very high radio-frequency (RF) nutation rates, decoupling performance is observed to degrade consistently with increasing magnetic field. Inhomogeneity of the RF field is found to have a significant impact on T2' values, with differences of about 20 % observed between probes with different coil geometries. Increasing RF nutation rates dramatically improve robustness with respect to RF offset, but the performance of phase-modulated sequences degrades at the very high nutation rates achievable in microcoils as a result of RF transients. The insights gained provide better understanding of the factors limiting decoupling performance under different conditions, and the high values of T2' observed (which generally exceed previous literature values) provide reference points for experiments involving spin magnetisation refocussing, such as 2D correlation spectra and measuring small spin couplings.
Collapse
Affiliation(s)
- Ilya Frantsuzov
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUnited Kingdom
| | - Suresh K. Vasa
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 EDNijmegenThe Netherlands
| | - Matthias Ernst
- Laboratory of Physical ChemistryETH ZürichVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Steven P. Brown
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Vadim Zorin
- Agilent Technologies (UK) Ltd.6 Mead RoadYarntonOxfordshireOX5 1QUUnited Kingdom
- Mestrelab ResearchS.L Feliciano Barrera 9B—Bajo15706Santiago de CompostelaSpain
| | - Arno P. M. Kentgens
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 EDNijmegenThe Netherlands
| | - Paul Hodgkinson
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUnited Kingdom
| |
Collapse
|
12
|
Sharma K, Madhu PK, Agarwal V. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:136-141. [PMID: 27472380 DOI: 10.1016/j.jmr.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.
Collapse
Affiliation(s)
- Kshama Sharma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India.
| |
Collapse
|
13
|
Equbal A, Leskes M, Nielsen NC, Madhu PK, Vega S. Relative merits of rCW(A) and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:55-64. [PMID: 26773527 DOI: 10.1016/j.jmr.2015.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/19/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent.
Collapse
Affiliation(s)
- Asif Equbal
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Michal Leskes
- Weizmann Institute of Science, Department of Materials and Interfaces, Rehovot, Israel.
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - P K Madhu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India; TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India.
| | - Shimon Vega
- Weizmann Institute of Science, Department of Chemical Physics, Rehovot, Israel.
| |
Collapse
|
14
|
Equbal A, Basse K, Nielsen NC. Highly efficient19F heteronuclear decoupling in solid-state NMR spectroscopy using supercycled refocused-CW irradiation. Phys Chem Chem Phys 2016; 18:30990-30997. [DOI: 10.1039/c6cp06574k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present heteronuclear19F refocused CW (rCW) decoupling pulse sequences for solid-state magic-angle-spinning NMR applications.
Collapse
Affiliation(s)
- Asif Equbal
- Center for Insoluble Protein Structures (inSPIN)
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry
- Aarhus University
- Denmark
| | - Kristoffer Basse
- Center for Insoluble Protein Structures (inSPIN)
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry
- Aarhus University
- Denmark
| | - Niels Chr. Nielsen
- Center for Insoluble Protein Structures (inSPIN)
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry
- Aarhus University
- Denmark
| |
Collapse
|
15
|
Equbal A, Bjerring M, Sharma K, Madhu P, Nielsen NC. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Improving spectral resolution in biological solid-state NMR using phase-alternated rCW heteronuclear decoupling. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Equbal A, Bjerring M, Madhu PK, Nielsen NC. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy. J Chem Phys 2015; 142:184201. [PMID: 25978884 DOI: 10.1063/1.4919634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW(A)) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW(A) decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.
Collapse
Affiliation(s)
- Asif Equbal
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Morten Bjerring
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - P K Madhu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Demers JP, Vijayan V, Lange A. Recovery of Bulk Proton Magnetization and Sensitivity Enhancement in Ultrafast Magic-Angle Spinning Solid-State NMR. J Phys Chem B 2015; 119:2908-20. [DOI: 10.1021/jp511987y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jean-Philippe Demers
- Department of NMR-Based Structural
Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Vinesh Vijayan
- Department of NMR-Based Structural
Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of NMR-Based Structural
Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|