1
|
Zhang Z, Su Y, Xiao H, Yang J. Selective Nuclear Magnetic Resonance Method for Enhancing Long-Range Heteronuclear Correlations in Solids. J Phys Chem Lett 2022; 13:6376-6382. [PMID: 35796704 DOI: 10.1021/acs.jpclett.2c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The long-range heteronuclear correlation remains a significant challenge in solid-state nuclear magnetic resonance (NMR), which is critical in the structural elucidation of biomolecular, material, and pharmaceutical solids. We propose a selective NMR method, heteronuclear selective phase-optimized recoupling (hetSPR), to selectively enhance long-range correlations of interest by utilizing characteristic chemical shifts. Compared to conventional methods, hetSPR can selectively enhance desired heteronuclear correlations (e.g., 1H-13C and 1H-19F) by factors up to 5 and largely suppress the unwanted ones. The method proves useful by enhancing the long-range correlation from an intermolecular 1H-19F distance of 4.8 Å by a factor of 2.4 in a fluorinated pharmaceutical drug, bicalutamide, under fast magic-angle spinning. It does not use selective pulses and is thus user-friendly even for nonexperts. The new method is expected to boost solid-state NMR to elucidate the structures of various solids.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongchao Su
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas 78712, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Nimerovsky E, Xue K, Movellan K, Andreas L. Heteronuclear and homonuclear radio-frequency-driven recoupling. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:343-353. [PMID: 37904771 PMCID: PMC10539778 DOI: 10.5194/mr-2-343-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/11/2021] [Indexed: 11/01/2023]
Abstract
The radio-frequency-driven recoupling (RFDR) pulse sequence is used in magic-angle spinning (MAS) NMR to recouple homonuclear dipolar interactions. Here we show simultaneous recoupling of both the heteronuclear and homonuclear dipolar interactions by applying RFDR pulses on two channels. We demonstrate the method, called HETeronuclear RFDR (HET-RFDR), on microcrystalline SH3 samples at 10 and 55.555 kHz MAS. Numerical simulations of both HET-RFDR and standard RFDR sequences allow for better understanding of the influence of offsets and paths of magnetization transfers for both HET-RFDR and RFDR experiments, as well as the crucial role of XY phase cycling.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR-based Structural Biology, Max Planck Institute for
Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Kai Xue
- Department of NMR-based Structural Biology, Max Planck Institute for
Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department of NMR-based Structural Biology, Max Planck Institute for
Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Loren B. Andreas
- Department of NMR-based Structural Biology, Max Planck Institute for
Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| |
Collapse
|
3
|
Zhang Z, Liu H, Deng J, Tycko R, Yang J. Optimization of band-selective homonuclear dipolar recoupling in solid-state NMR by a numerical phase search. J Chem Phys 2019; 150:154201. [PMID: 31005077 DOI: 10.1063/1.5092986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spin polarization transfers among aliphatic 13C nuclei, especially 13Cα-13Cβ transfers, permit correlations of their nuclear magnetic resonance (NMR) frequencies that are essential for signal assignments in multidimensional solid-state NMR of proteins. We derive and demonstrate a new radio-frequency (RF) excitation sequence for homonuclear dipolar recoupling that enhances spin polarization transfers among aliphatic 13C nuclei at moderate magic-angle spinning (MAS) frequencies. The phase-optimized recoupling sequence with five π pulses per MAS rotation period (denoted as PR5) is derived initially from systematic numerical simulations in which only the RF phases are varied. Subsequent theoretical analysis by average Hamiltonian theory explains the favorable properties of numerically optimized phase schemes. The high efficiency of spin polarization transfers in simulations is preserved in experiments, in part because the RF field amplitude in PR5 is only 2.5 times the MAS frequency so that relatively low 1H decoupling powers are required. Experiments on a microcrystalline sample of the β1 immunoglobulin binding domain of protein G demonstrate an average enhancement factor of 1.6 for 13Cα → 13Cβ polarization transfers, compared to the standard 13C-13C spin-diffusion method, implying a two-fold time saving in relevant 2D and 3D experiments.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Hui Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Jing Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Jun Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
4
|
Zhang Z, Li J, Chen Y, Xie H, Yang J. A robust heteronuclear dipolar recoupling method comparable to TEDOR for proteins in magic-angle spinning solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:79-85. [PMID: 29126001 DOI: 10.1016/j.jmr.2017.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N→13C' and 15N→13Cα), Bro-DBP has almost the same 15N→13Cα efficiency while offers 30-40% enhancement on 15N→13C' transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C')-selected method, whose 15N→13C' efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Jianping Li
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|