1
|
Choi CH, Hong SM, Felder J, Bruch M, Worthoff WA, Krause S, Shah NJ. Design, construction, and use of a tapered-spiral, quadrature 1H/ 23Na double-tuned coil for in ovo MRI at 7 T. Med Phys 2024; 51:8761-8767. [PMID: 39382836 DOI: 10.1002/mp.17448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND In ovo MR presents a promising and viable alternative to traditional in vivo small animal experiments. Sodium MRI complements proton MRI by providing potential access to tissue cellular metabolism. Despite its abundance, sodium MRI is challenged by lower MR sensitivity and faster relaxation times compared to proton MRI. Ensuring a high signal-to-noise ratio and effective B0 shimming is essential. Double-tuned coils combining 23Na and 1H are frequently employed to achieve structural imaging and efficient shim adjustment. PURPOSE This study introduces a novel, highly optimized, double-tuned coil design, specifically for MR scans of chick embryos. METHODS A tapered-spiral, double-tuned coil was designed and constructed following careful consideration of design parameters. The performance of the coil was rigorously assessed through bench tests, and final validation was conducted on a 7 T MRI scanner using a chick embryo. RESULTS Bench tests demonstrated that the return losses for both 1H and 23Na coils were better than - 30 dB, and isolation factors were better than - 21 dB, indicating that the double-tuned coil was well-set, with negligible coupling between channels. MR images of chick embryos, obtained using the coil, validated the feasibility of utilizing the design concept for in ovo applications. CONCLUSIONS The innovative design of the proposed double-tuned coil, characterized by its unique arrangement, offers improved performance. This design has the potential to significantly enhance the quality of in ovo 1H and 23Na measurements.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Juelich, Germany
- Aachen University of Applied Sciences, Jülich, Germany
| | - Suk-Min Hong
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Juelich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Juelich, Germany
- RWTH University, Aachen, Germany
| | - Maximilian Bruch
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Juelich, Germany
- Aachen University of Applied Sciences, Jülich, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Juelich, Germany
| | - Sandra Krause
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Juelich, Germany
- Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich, Juelich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Dai J, Gosselink M, van der Velden TA, Meliadò EF, Raaijmakers AJE, Klomp DWJ. An RF coil design to enable quintuple nuclear whole-brain MRI. Magn Reson Med 2023; 89:2131-2141. [PMID: 36740899 DOI: 10.1002/mrm.29577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To bring metabolic imaging based on multi-NMR toward practical use from the RF hardware perspective. METHODS A highly integrated RF coil is designed for whole-brain MRI and MRS targeted to five nuclear species: 1 H, 19 F, 31 P, 23 Na, and 13 C. Dipole antennas and closely loaded local receiver loops are combined in this setup. RESULTS High-quality in vivo scan results of 1 H, 31 P, 23 Na, and 13 C on healthy volunteers have been achieved. For 1 H, the transmit efficiency is 77% of a single-tuned commercial head coil (NOVA 8-transmit [Tx]/32-receive [Rx]; NOVA Medical, Wilmington, MA, USA). For 31 P, 110% SNR of a dual-tuned close-fit head-birdcage was achieved at the center of the subject, based on MR experiments on a phantom. For 31 P, 23 Na, and 13 C, bench measurements indicate SNR loss of 15%, 27%, and 30% compared with single-tuned conditions. 19 F performance has been proven to be similar to that of 1 H through bench tests and electromagnetic simulations. CONCLUSION With this device, 1 H-based anatomic images that are expected to meet clinical requirements, as well as high-quality multi-NMR images and spectra, can be acquired within one scan session without hardware replacement or patient repositioning, enabling morphologic and metabolic MRI within acceptable scan time.
Collapse
Affiliation(s)
- Jiying Dai
- University Medical Center Utrecht, Utrecht, The Netherlands.,Tesla Dynamic Coils B.V., Zaltbommel, The Netherlands
| | - Mark Gosselink
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ettore Flavio Meliadò
- University Medical Center Utrecht, Utrecht, The Netherlands.,Tesla Dynamic Coils B.V., Zaltbommel, The Netherlands
| | | | | |
Collapse
|
3
|
Özen AC, Spreter F, Schimpf W, Fischer J, Ilbey S, Reiss S, Maier A, von Elverfeldt D, Heidt T, von Zur Mühlen C, Bock M. Scalable and modular 8-channel transmit and 8-channel flexible receive coil array for 19 F MRI of large animals. Magn Reson Med 2023; 89:1237-1250. [PMID: 36226654 DOI: 10.1002/mrm.29490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To introduce an RF coil system consisting of an 8-channel transmit (Tx) and 8-channel receive (Rx) coil arrays for 19 F MRI of large animals. METHODS The Tx efficiency and homogeneity of the 8-element loop coil array (loop size: 6 × 15 cm2 ) were simulated for two different pig models rendered from MR images. An 8-channel Rx coil array consisting of a flexible 6-channel posterior and a 2-channel planar anterior array was designed to fit on the abdomen of an average-sized pig in supine position. Measurements were performed in a grid phantom and ex vivo on a pig model with perfluoroctylbromide (PFOB)-filled tubes inserted in the thorax. RESULTS Measured and simulated Tx efficiency and homogeneity for the 8-channel and 5-channel arrays were in good agreement: 1.87 ± 0.22μT/√kW versus 1.96 ± 0.29μT/√kW, and 2.29 ± 0.39μT/√kW versus 2.41 ± 0.37μT/√kW. An isolation of 38 ± 8 dB is achieved between the 19 F Tx and Rx elements, and over 30 dB between the 1 H and 19 F elements. The PFOB-filled vials could be clearly identified within the cadaver abdomen with an SNR of 275 ± 51 for a 3D gradient-echo sequence with 2-mm isotropic resolution and 12 averages, acquired in 9:52 min:s. Performance of the Tx array was robust against phase and amplitude mismatches at the input ports. CONCLUSIONS A modular and scalable Tx array offers improved Tx efficiency in 19 F MRI of large animals with various sizes. Although conventional birdcage coils have superior Tx efficiency within the target region of interest, scalability of the Tx array to animal size is a major benefit. The described 19 F coil provides homogeneous excitation and high sensitivity detection in large pig models.
Collapse
Affiliation(s)
- Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Felix Spreter
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Waldemar Schimpf
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Johannes Fischer
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Simon Reiss
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Alexander Maier
- Department of Cardiology and Angiology I, University Heart Center, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
5
|
Stegmayr C, Surges R, Choi CH, Burda N, Stoffels G, Filß C, Willuweit A, Neumaier B, Heinzel A, Shah NJ, Mottaghy FM, Langen KJ. Investigation of Cerebral O-(2-[ 18F]Fluoroethyl)-L-Tyrosine Uptake in Rat Epilepsy Models. Mol Imaging Biol 2021; 22:1255-1265. [PMID: 32409931 PMCID: PMC7497431 DOI: 10.1007/s11307-020-01503-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE A recent study reported on high, longer lasting and finally reversible cerebral uptake of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) induced by epileptic activity. Therefore, we examined cerebral [18F]FET uptake in two chemically induced rat epilepsy models and in patients with focal epilepsy to further investigate whether this phenomenon represents a major pitfall in brain tumor diagnostics and whether [18F]FET may be a potential marker to localize epileptic foci. PROCEDURES Five rats underwent kainic acid titration to exhibit 3 to 3.5 h of class IV-V motor seizures (status epilepticus, SE). Rats underwent 4× [18F]FET PET and 4× MRI on the following 25 days. Six rats underwent kindling with pentylenetetrazol (PTZ) 3 to 8×/week over 10 weeks, and hence, seizures increased from class I to class IV. [18F]FET PET and MRI were performed regularly on days with and without seizures. Four rats served as healthy controls. Additionally, five patients with focal epilepsy underwent [18F]FET PET within 12 days after the last documented seizure. RESULTS No abnormalities in [18F]FET PET or MRI were detected in the kindling model. The SE model showed significantly decreased [18F]FET uptake 3 days after SE in all examined brain regions, and especially in the amygdala region, which normalized within 2 weeks. Corresponding signal alterations in T2-weighted MRI were noted in the amygdala and hippocampus, which recovered 24 days post-SE. No abnormality of cerebral [18F]FET uptake was noted in the epilepsy patients. CONCLUSIONS There was no evidence for increased cerebral [18F]FET uptake after epileptic seizures neither in the rat models nor in patients. The SE model even showed decreased [18F]FET uptake throughout the brain. We conclude that epileptic seizures per se do not cause a longer lasting increased [18F]FET accumulation and are unlikely to be a major cause of pitfall for brain tumor diagnostics.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Rainer Surges
- Department of Neurology, RWTH University Aachen, Aachen, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nicole Burda
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christian Filß
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Heinzel
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Neurology, RWTH University Aachen, Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany.,Centre of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Centre of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
| |
Collapse
|
6
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|
7
|
Fantasia M, Galante A, Maggiorelli F, Retico A, Fontana N, Monorchio A, Alecci M. Numerical and Workbench Design of 2.35 T Double-Tuned (¹H/²³Na) Nested RF Birdcage Coils Suitable for Animal Size MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3175-3186. [PMID: 32310762 DOI: 10.1109/tmi.2020.2988599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (1H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g. 13C, 23Na, 31P, and many others) needs to be detected with high sensitivity and spatial homogeneity. To this purpose several technical solutions have been adopted to design Double Tuned (DT) volume RF coils, including the recent configuration of the nested birdcage RF coils. One of the main problems in the design of DT RF coils is the decoupling between the 1H and X channels, and a number of solutions have been adopted over the years. In this work, based on numerical and workbench methods, we report the decoupling optimization of DT (1H/23Na) nested RF birdcage coils suitable for 2.35 T MRI scanners encompassing an inner Low-Pass (LP) birdcage used for X-nuclei, an outer High-Pass (HP) birdcage for 1H and an external cylindrical RF shield. We show that a suitable geometrical selection of the two coaxial RF birdcage coils (relative angular orientation, diameters and lengths) and RF shield (diameter, length) allows a significant decoupling optimization. We also provide valuable information about the RF B1+ field homogeneity and efficiency. Our approach was validated both with numerical simulations and workbench testing using DT nested RF coil prototypes.
Collapse
|
8
|
Felder J, Choi CH, Ko Y, Shah NJ. Optimization of high-channel count, switch matrices for multinuclear, high-field MRI. PLoS One 2020; 15:e0237494. [PMID: 32804972 PMCID: PMC7430713 DOI: 10.1371/journal.pone.0237494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Modern magnetic resonance imaging systems are equipped with a large number of receive connectors in order to optimally support a large field-of-view and/or high acceleration in parallel imaging using high-channel count, phased array coils. Given that the MR system is equipped with a limited number of digitizing receivers and in order to support operation of multinuclear coil arrays, these connectors need to be flexibly routed to the receiver outside the RF shielded examination room. However, for a number of practical, economic and safety reasons, it is better to only route a subset of the connectors. This is usually accomplished with the use of switch matrices. These exist in a variety of topologies and differ in routing flexibility and technological implementation. A highly flexible implementation is a crossbar topology that allows to any one input to be routed to any one output and can use single PIN diodes as active elements. However, in this configuration, long open-ended transmission lines can potentially remain connected to the signal path leading to high transmission losses. Thus, especially for high-field systems compensation mechanisms are required to remove the effects of open-ended transmission line stubs. The selection of a limited number of lumped element reactance values to compensate for the for the effect of transmission line stubs in large-scale switch matrices capable of supporting multi-nuclear operation is non-trivial and is a combinatorial problem of high order. Here, we demonstrate the use of metaheuristic approaches to optimize the circuit design of these matrices that additionally carry out the optimization of distances between the parallel transmission lines. For a matrix with 128 inputs and 64 outputs a realization is proposed that displays a worst-case insertion loss of 3.8 dB.
Collapse
Affiliation(s)
- Jörg Felder
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - Yunkyoung Ko
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine -11, Forschungszentrum Jülich, Jülich, Germany
- JARA—BRAIN—Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Choi CH, Stegmayr C, Shymanskaya A, Worthoff WA, da Silva NA, Felder J, Langen KJ, Shah NJ. An in vivo multimodal feasibility study in a rat brain tumour model using flexible multinuclear MR and PET systems. EJNMMI Phys 2020; 7:50. [PMID: 32728773 PMCID: PMC7391464 DOI: 10.1186/s40658-020-00319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background In addition to the structural information afforded by 1H MRI, the use of X-nuclei, such as sodium-23 (23Na) or phosphorus-31 (31P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models. Methods In this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). This made it possible for in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET. Results High-quality in vivo images and spectra including high-resolution 1H imaging, 23Na-weighted imaging, detection of 31P metabolites and [18F]FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a healthy brain. It has been reported in the literature that these parameters are useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy. Conclusions The combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | | | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Nuno A da Silva
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Section JARA-BRAIN, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany. .,Institute of Neuroscience and Medicine-11, INM-11, JARA, Forschungszentrum Jülich, Germany. .,JARA-BRAIN-Translational Medicine, Aachen, Germany. .,Department of Neurology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Ko YK, Choi CH, Shah NJ, Felder J. Signal Loss Compensation of RF Crossbar Switch Matrix System in Ultra-High Field MRI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1458-1466. [PMID: 30235148 DOI: 10.1109/tbcas.2018.2871498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With the increased commercial availability of high channel count MR coil arrays and the associated higher number of plugs in the patient bed, it has become a common practice to include switch matrices in the receive path of MR systems. These allow the arbitrary routing of a signal from any plug to any receiver in the console. While switch matrices are standard in systems at clinical field strength and have been developed for systems operating up to 4T, they have not yet been implemented at ultra-high field (UHF). Here, we present a switch matrix suitable for operation at UHF. Crossbar switches, which are the most frequently employed forms of a switch matrix, use RF switches to connect horizontal input lines with the desired vertical output line. This leaves transmission line stubs of variable length physically connected with the selected signal path, potentially resulting in elevated signal losses. While this can be tolerated at low frequencies, and only needs partial compensation at intermediate frequencies (4T), a full compensation is required at UHF. In this study, an RF crossbar switch, which uses switchable compensation elements in both horizontal and vertical transmission lines, was implemented for a 9.4T MRI scanner. The prototype developed was evaluated for single channel and multichannel receive performance and benchmarked against a fixed wire connection.
Collapse
|
11
|
Ha Y, Choi CH, Shah NJ. Development and Implementation of a PIN-Diode Controlled, Quadrature-Enhanced, Double-Tuned RF Coil for Sodium MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1626-1631. [PMID: 29969413 DOI: 10.1109/tmi.2017.2786466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sodium (23Na) MRI provides complementary cellular and metabolic information. However, the intrinsic MR sensitivity of 23Na is considerably lower compared with that of the proton, making it difficult to measure MR-detectable sodium signals. It is therefore important to maintain the signal-to-noise ratio (SNR) of the sodium signal as high as possible. Double-tuned coils are often employed in combinationwith a 1H coil, providing structural images and B0 shimming capability. The double-tuned coil design can be achieved with the use of two geometrically decoupled coils whose B1 field directions are perpendicular to each other. This can be used to design quadrature-driven, single-nucleus coils to improve SNR, and additionally, this coil can also be utilized as a linear-driven double-resonant mode. Here, we have developed and evaluateda quadrature-enhanced, double-tuned coil. The novel coil uses PIN-diode switches, inserted only in the loop coil, to shift the resonance frequency between 1H and 23Na so that 23Na signals can be acquired in quadrature and the capability of using 1H function remains. Consequently, the 23Na SNR values obtained with the double-tuned coil are nearly 33% and 17% higher in comparison with geometrically identical single-tuned coils. SNR plots also show the superiority of double-tuned coil in 23Na.
Collapse
|
12
|
Ha Y, Choi CH, Worthoff WA, Shymanskaya A, Schöneck M, Willuweit A, Felder J, Shah NJ. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:110-114. [PMID: 29227914 DOI: 10.1016/j.jmr.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1H (400 MHz) and inner low-pass coil for 23Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1H and -27 dB for 23Na. Signal-to-noise ratios (SNRs) were calculated and 23Na flip angle maps were acquired. 23Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo1H and 23Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR.
Collapse
Affiliation(s)
- YongHyun Ha
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany.
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Aliaksandra Shymanskaya
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Michael Schöneck
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany; Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany
| |
Collapse
|
13
|
Felder J, Celik AA, Choi CH, Schwan S, Shah NJ. 9.4 T small animal MRI using clinical components for direct translational studies. J Transl Med 2017; 15:264. [PMID: 29282070 PMCID: PMC5745792 DOI: 10.1186/s12967-017-1373-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetic resonance is a major preclinical and clinical imaging modality ideally suited for longitudinal studies, e.g. in pharmacological developments. The lack of a proven platform that maintains an identical imaging protocol between preclinical and clinical platforms is solved with the construction of an animal scanner based on clinical hard- and software. METHODS A small animal magnet and gradient system were connected to a clinical MR system. Several hardware components were either modified or built in-house to achieve compatibility. The clinical software was modified to account for the different field-of-view of a preclinical MR system. The established scanner was evaluated using clinical QA protocols, and platform compatibility for translational research was verified against clinical scanners of different field strength. RESULTS The constructed animal scanner operates with the majority of clinical imaging sequences. Translational research is greatly facilitated as protocols can be shared between preclinical and clinical platforms. Hence, when maintaining sequences parameters, maximum similarity between pulses played out on a human or an animal system is maintained. CONCLUSION Coupling of a small animal magnet with a clinical MR system is a flexible, easy to use way to establish and advance translational imaging capability. It provides cost and labor efficient translational capability as no tedious sequence reprogramming between moieties is required and cross-platform compatibility of sequences facilitates multi-center studies.
Collapse
Affiliation(s)
- Jörg Felder
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - A. Avdo Celik
- Institute of Neuroscience and Medicine-11, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stefan Schwan
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Neuroscience and Medicine-11, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Medicine, Department of Neurology, JARA, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
14
|
Choi CH, Hong SM, Ha Y, Shah NJ. Design and construction of a novel 1H/ 19F double-tuned coil system using PIN-diode switches at 9.4T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 279:11-15. [PMID: 28411437 DOI: 10.1016/j.jmr.2017.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
A double-tuned 1H/19F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany.
| | - Suk-Min Hong
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - YongHyun Ha
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany; Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany; Department of Electrical and Computer Systems Engineering, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|