1
|
Simicic D, Zöllner HJ, Davies-Jenkins CW, Hupfeld KE, Edden RAE, Oeltzschner G. Model-based frequency-and-phase correction of 1H MRS data with 2D linear-combination modeling. Magn Reson Med 2024; 92:2222-2236. [PMID: 38988088 PMCID: PMC11341254 DOI: 10.1002/mrm.30209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear-combination model (2D-LCM) of individual transients ("model-based FPC"). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. METHODS We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground-truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. RESULTS 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of FPC and amplitudes performed substantially better at low-to-very-low SNR. CONCLUSION Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, for example, long TEs or strong diffusion weighting.
Collapse
Affiliation(s)
- Dunja Simicic
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W. Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E. Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
2
|
Simicic D, Zöllner HJ, Davies-Jenkins CW, Hupfeld KE, Edden RAE, Oeltzschner G. Model-based frequency-and-phase correction of 1H MRS data with 2D linear-combination modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586804. [PMID: 38585798 PMCID: PMC10996641 DOI: 10.1101/2024.03.26.586804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Purpose Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a two-dimensional linear-combination model (2D-LCM) of individual transients ('model-based FPC'). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. Methods We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the standard deviation of those ground-truth errors, and amplitude Cramér Rao Lower Bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. Results 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of frequency and phase correction and amplitudes performed substantially better at low-to-very-low SNR. Conclusion Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, e.g., long TEs or strong diffusion weighting.
Collapse
Affiliation(s)
- Dunja Simicic
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W. Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E. Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
3
|
Hui SC, Zöllner HJ, Oeltzschner G, Edden RAE, Saleh MG. In vivo spectral editing of phosphorylethanolamine. Magn Reson Med 2022; 87:50-56. [PMID: 34411324 PMCID: PMC8616810 DOI: 10.1002/mrm.28976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To demonstrate J-difference editing of phosphorylethanolamine (PE) with chemical shifts at 3.22 (PE3.22 ) and 3.98 (PE3.98 ) ppm, and compare the merits of two editing strategies. METHODS Density-matrix simulations of MEGA-PRESS (Mescher-Garwood PRESS) for PE were performed at TEs ranging from 80 to 200 ms in steps of 2 ms, applying 20-ms editing pulses (ON/OFF) at (1) 3.98/7.5 ppm to detect PE3.22 and (2) 3.22/7.5 ppm to detect PE3.98 . Phantom experiments were performed using a PE phantom to validate simulation results. Ten subjects were scanned using a Philips 3T MRI scanner at TEs of 90 ms and 110 ms to edit PE3.22 and PE3.98 . Osprey was used for data processing, modeling, and quantification. RESULTS Simulations show substantial TE modulation of the intensity and shape of the edited signals due to coupling evolution. Simulated and phantom integrals suggest that TEs of 110 ms and 90 ms were optimal for the edited detection of PE3.22 and PE3.98 , respectively. Phantom results indicated strong agreement with the simulated spectra and integrals. In vivo quantification of the PE3.22 /total creatine and PE3.98 /total creatine concentration ratio yielded values of 0.26 ± 0.04 (between-subject coefficient of variation [CV]: 15.4%) and 0.18 ± 0.04 (CV: 22.8%), respectively, at TE = 90 ms, and 0.24 ± 0.02 (CV: 8.2%) and 0.23 ± 0.04 (CV: 18.0%), respectively, at TE = 110 ms. CONCLUSION Simulations and in vivo MEGA-PRESS of PE demonstrate that both PE3.22 and PE3.98 are potential candidates for editing, but PE3.22 at TE = 110 ms yields lower variation across TEs.
Collapse
Affiliation(s)
- Steve C.N. Hui
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, USA
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, USA
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, USA
| | - Muhammad G. Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, USA
| |
Collapse
|
4
|
On the reproducibility of hippocampal MEGA-sLASER GABA MRS at 7T using an optimized analysis pipeline. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2021; 34:427-436. [PMID: 32865653 PMCID: PMC8154804 DOI: 10.1007/s10334-020-00879-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/05/2022]
Abstract
Objectives GABA is the most important inhibitory neurotransmitter. Thus, variation in its concentration is connected to a wide variety of diseases. However, the low concentration and the overlap of more prominent resonances hamper GABA quantification using MR spectroscopy. The hippocampus plays a pivotal role in neurodegeneration. Susceptibility discontinuities in the vicinity of the hippocampus cause strong B0 inhomogeneities, impeding GABA spectroscopy. The aim of this work is to improve the reproducibility of hippocampal GABA+ MRS. Methods The GABA+/total creatine ratio in the hippocampus was measured using a MEGA-sLASER sequence at 7 Tesla. 10 young healthy volunteers participated in the study. A dedicated pre-processing approach was established. Spectral quantification was performed with Tarquin. The quantification parameters were carefully adjusted to ensure optimal quantification. Results An inter-subject coefficient of variation of the GABA+/total creatine of below 15% was achieved. Additional to spectral registration, which is essential to obtain reproducible GABA measures, eddy current compensation and additional difference artifact suppression improved the reproducibility. The mean FWHM was 23.1 Hz (0.078 ppm). Conclusion The increased spectral dispersion of ultra-high-field spectroscopy allows for reproducible spectral quantification, despite a very broad line width. The achieved reproducibility enables the routine use of hippocampal GABA spectroscopy at 7 Tesla. Electronic supplementary material The online version of this article (10.1007/s10334-020-00879-9) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Near J, Harris AD, Juchem C, Kreis R, Marjańska M, Öz G, Slotboom J, Wilson M, Gasparovic C. Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4257. [PMID: 32084297 PMCID: PMC7442593 DOI: 10.1002/nbm.4257] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 05/05/2023]
Abstract
Once an MRS dataset has been acquired, several important steps must be taken to obtain the desired metabolite concentration measures. First, the data must be preprocessed to prepare them for analysis. Next, the intensity of the metabolite signal(s) of interest must be estimated. Finally, the measured metabolite signal intensities must be converted into scaled concentration units employing a quantitative reference signal to allow meaningful interpretation. In this paper, we review these three main steps in the post-acquisition workflow of a single-voxel MRS experiment (preprocessing, analysis and quantification) and provide recommendations for best practices at each step.
Collapse
Affiliation(s)
- Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Hotchkiss Brain Institute, Calgary, Canada
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York NY, USA
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University Bern, Switzerland
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis MN, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis MN, USA
| | - Johannes Slotboom
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, England
| | | |
Collapse
|
6
|
Tapper S, Mikkelsen M, Dewey BE, Zöllner HJ, Hui SCN, Oeltzschner G, Edden RAE. Frequency and phase correction of J-difference edited MR spectra using deep learning. Magn Reson Med 2020; 85:1755-1765. [PMID: 33210342 DOI: 10.1002/mrm.28525] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate whether a deep learning-based (DL) approach can be used for frequency-and-phase correction (FPC) of MEGA-edited MRS data. METHODS Two neural networks (1 for frequency, 1 for phase) consisting of fully connected layers were trained and validated using simulated MEGA-edited MRS data. This DL-FPC was subsequently tested and compared to a conventional approach (spectral registration [SR]) and to a model-based SR implementation (mSR) using in vivo MEGA-edited MRS datasets. Additional artificial offsets were added to these datasets to further investigate performance. RESULTS The validation showed that DL-based FPC was capable of correcting within 0.03 Hz of frequency and 0.4°of phase offset for unseen simulated data. DL-based FPC performed similarly to SR for the unmanipulated in vivo test datasets. When additional offsets were added to these datasets, the networks still performed well. However, although SR accurately corrected for smaller offsets, it often failed for larger offsets. The mSR algorithm performed well for larger offsets, which was because the model was generated from the in vivo datasets. In addition, the computation times were much shorter using DL-based FPC or mSR compared to SR for heavily distorted spectra. CONCLUSION These results represent a proof of principle for the use of DL for preprocessing MRS data.
Collapse
Affiliation(s)
- Sofie Tapper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Blake E Dewey
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Mikkelsen M, Tapper S, Near J, Mostofsky SH, Puts NAJ, Edden RAE. Correcting frequency and phase offsets in MRS data using robust spectral registration. NMR IN BIOMEDICINE 2020; 33:e4368. [PMID: 32656879 PMCID: PMC9652614 DOI: 10.1002/nbm.4368] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 05/16/2023]
Abstract
An algorithm for retrospective correction of frequency and phase offsets in MRS data is presented. The algorithm, termed robust spectral registration (rSR), contains a set of subroutines designed to robustly align individual transients in a given dataset even in cases of significant frequency and phase offsets or unstable lipid contamination and residual water signals. Data acquired by complex multiplexed editing approaches with distinct subspectral profiles are also accurately aligned. Automated removal of unstable lipid contamination and residual water signals is applied first, when needed. Frequency and phase offsets are corrected in the time domain by aligning each transient to a weighted average reference in a statistically optimal order using nonlinear least-squares optimization. The alignment of subspectra in edited datasets is performed using an approach that specifically targets subtraction artifacts in the frequency domain. Weighted averaging is then used for signal averaging to down-weight poorer-quality transients. Algorithm performance was assessed on one simulated and 67 in vivo pediatric GABA-/GSH-edited HERMES datasets and compared with the performance of a multistep correction method previously developed for aligning HERMES data. The performance of the novel approach was quantitatively assessed by comparing the estimated frequency/phase offsets against the known values for the simulated dataset or by examining the presence of subtraction artifacts in the in vivo data. Spectral quality was improved following robust alignment, especially in cases of significant spectral distortion. rSR reduced more subtraction artifacts than the multistep method in 64% of the GABA difference spectra and 75% of the GSH difference spectra. rSR overcomes the major challenges of frequency and phase correction.
Collapse
Affiliation(s)
- Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Sofie Tapper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Stewart H. Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicolaas A. J. Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
8
|
Mikkelsen M, Saleh MG, Near J, Chan KL, Gong T, Harris AD, Oeltzschner G, Puts NAJ, Cecil KM, Wilkinson ID, Edden RAE. Frequency and phase correction for multiplexed edited MRS of GABA and glutathione. Magn Reson Med 2018; 80:21-28. [PMID: 29215137 PMCID: PMC5876096 DOI: 10.1002/mrm.27027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE Detection of endogenous metabolites using multiplexed editing substantially improves the efficiency of edited magnetic resonance spectroscopy. Multiplexed editing (i.e., performing more than one edited experiment in a single acquisition) requires a tailored, robust approach for correction of frequency and phase offsets. Here, a novel method for frequency and phase correction (FPC) based on spectral registration is presented and compared against previously presented approaches. METHODS One simulated dataset and 40 γ-aminobutyric acid-/glutathione-edited HERMES datasets acquired in vivo at three imaging centers were used to test four FPC approaches: no correction; spectral registration; spectral registration with post hoc choline-creatine alignment; and multistep FPC. The performance of each routine for the simulated dataset was assessed by comparing the estimated frequency/phase offsets against the known values, whereas the performance for the in vivo data was assessed quantitatively by calculation of an alignment quality metric based on choline subtraction artifacts. RESULTS The multistep FPC approach returned corrections that were closest to the true values for the simulated dataset. Alignment quality scores were on average worst for no correction, and best for multistep FPC in both the γ-aminobutyric acid- and glutathione-edited spectra in the in vivo data. CONCLUSIONS Multistep FPC results in improved correction of frequency/phase errors in multiplexed γ-aminobutyric acid-/glutathione-edited magnetic resonance spectroscopy experiments. The optimal FPC strategy is experiment-specific, and may even be dataset-specific. Magn Reson Med 80:21-28, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Muhammad G. Saleh
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kimberly L. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Gong
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Nicolaas A. J. Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|