1
|
Han R, Paterson AL, Milchberg MH, Pang Y, Vanderloop BH, Rienstra CM. Tetrakis(trimethylsilyl)silane as a standard compound for fast spinning Solid-State NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 367:107747. [PMID: 39178749 PMCID: PMC11408081 DOI: 10.1016/j.jmr.2024.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
The development of magic angle spinning (MAS) at rates ranging from 30 kHz to greater than 100 kHz has substantially advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy 1H-detection methods. The small rotors required for such MAS rates have a limited sample volume and low 13C-detection sensitivity, rendering the traditional set of standard compounds for SSNMR insufficient or highly inconvenient for shimming and magic-angle calibration. Additionally, the reproducibility of magic angle setting, chemical shift referencing, and probe position can be especially critical for SSNMR experiments at high fields. These conditions suggest the need for a high signal-to-noise ratio (SNR) 1H-detection standard compound, which is preferably multi-purpose, to simplify instrument set up for ultra-fast MAS SSNMR instruments at high magnetic fields. In this study, we present the results for setting magic angle and shimming using tetrakis(trimethylsilyl)silane (TTMSS, or TKS), a tetramethylsilane (TMS) analogue, at near 40 kHz and demonstrate that we can achieve favorable results in less time but with equal or superior precision as traditional KBr and adamantane standards. The high SNR and TMS-like chemical shift of TKS also opens the possibilities for using TKS as an internal standard with biological samples. A single rotor containing a four-component mixture of TKS, adamantane, uniformly 13C, 15N-labeled N-acetyl valine and KBr was used to perform a complete configuration and calibration of a SSNMR probe without sample changes. We anticipate TKS as a standard compound to be especially effective at very high MAS conditions and to greatly simplify the instrument set up for high and ultra-high field SSNMR instruments.
Collapse
Affiliation(s)
- Ruixian Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander L Paterson
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, United States
| | - Moses H Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Yuanchi Pang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Boden H Vanderloop
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, United States; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Chad M Rienstra
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States; National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, United States; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
2
|
Simões de Almeida B, Torodii D, Moutzouri P, Emsley L. Barriers to resolution in 1H NMR of rotating solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107557. [PMID: 37776831 DOI: 10.1016/j.jmr.2023.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
The role of 1H solid-state NMR in structure elucidation of solids is becoming more preponderant, particularly as faster magic-angle spinning rates (MAS) become available which improve 1H detected assignment strategies. However, current 1H spectral resolution is still relatively poor, with linewidths of typically a few hundred Hz, even at the fastest rates available today. Here we detail and assess the factors limiting proton linewidths and line shapes in MAS experiments with five different samples, exemplifying the different sources of broadening that affect the residual linewidth. We disentangle the different contributions through one- and two-dimensional experiments: by using dilution to identify the contribution of ABMS; by using extensive deuteration to identify the dipolar contributions; and by using variable MAS rates to determine the ratio between homogeneous and inhomogeneous components. We find that the overall widths and the nature of the different contributions to the linewidths can vary very considerably. While we find that faster spinning always yields narrower lines and longer coherence lifetimes, we also find that for some resonances the dipolar contribution is no longer dominant at 100 kHz MAS. When the inhomogeneous sources of broadening, such as ABMS and chemical shift disorder, are dominant, two-dimensional 1H-1H correlation experiments yield better resolution for assignment. Particularly the extraction of the antidiagonal of a 2D peak will remove any correlated inhomogeneous broadening, giving substantially narrower 1H linewidths.
Collapse
Affiliation(s)
- Bruno Simões de Almeida
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Daria Torodii
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Osborn Popp TM, Matchett BT, Green RG, Chhabra I, Mumudi S, Bernstein AD, Perodeau JR, Nieuwkoop AJ. 3D-Printable centrifugal devices for biomolecular solid state NMR rotors. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107524. [PMID: 37481918 PMCID: PMC10528322 DOI: 10.1016/j.jmr.2023.107524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The advent of magic angle spinning (MAS) rates exceeding 100 kHz has facilitated the acquisition of 1H-detected solid-state NMR spectra of biomolecules with high resolution. However, challenges can arise when preparing rotors for these experiments, due to the physical properties of biomolecular solid samples and the small dimensions of the rotors. In this study, we have designed 3D-printable centrifugal devices that facilitate efficient and consistent packing of crystalline protein slurries or viscous phospholipids into 0.7 mm rotors. We demonstrate the efficacy of these packing devices using 1H-detected solid state NMR at 105 kHz. In addition to devices for 0.7 mm rotors, we have also developed devices for other frequently employed rotor sizes and styles. We have made all our designs openly accessible, and we encourage their usage and ongoing development as a shared effort within the solid state NMR community.
Collapse
Affiliation(s)
- Thomas M Osborn Popp
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States.
| | - Brandon T Matchett
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Rashawn G Green
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Insha Chhabra
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Smriti Mumudi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Ashley D Bernstein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Jacqueline R Perodeau
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
4
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
5
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
6
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Moutzouri P, Simões de Almeida B, Torodii D, Emsley L. Pure Isotropic Proton Solid State NMR. J Am Chem Soc 2021; 143:9834-9841. [PMID: 34170672 DOI: 10.1021/jacs.1c03315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Resolution in proton solid state magic angle sample spinning (MAS) NMR is limited by the intrinsically imperfect nature of coherent averaging induced by either MAS or multiple pulse sequence methods. Here, we suggest that instead of optimizing and perfecting a coherent averaging scheme, we could approach the problem by parametrically mapping the error terms due to imperfect averaging in a k-space representation, in such a way that they can be removed in a multidimensional correlation leaving only the desired pure isotropic signal. We illustrate the approach here by determining pure isotropic 1H spectra from a series of MAS spectra acquired at different spinning rates. For six different organic solids, the approach is shown to produce pure isotropic 1H spectra that are significantly narrower than the MAS spectrum acquired at the fastest possible rate, with linewidths down to as little as 48 Hz. On average, we observe a 7-fold increase in resolution, and up to a factor of 20, as compared with spectra acquired at 100 kHz MAS. The approach is directly applicable to a range of solids, and we anticipate that the same underlying principle for removing errors introduced here can be applied to other problems in NMR spectroscopy.
Collapse
Affiliation(s)
- Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bruno Simões de Almeida
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daria Torodii
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Nimerovsky E, Movellan KT, Zhang XC, Forster MC, Najbauer E, Xue K, Dervişoǧlu R, Giller K, Griesinger C, Becker S, Andreas LB. Proton Detected Solid-State NMR of Membrane Proteins at 28 Tesla (1.2 GHz) and 100 kHz Magic-Angle Spinning. Biomolecules 2021; 11:752. [PMID: 34069858 PMCID: PMC8157399 DOI: 10.3390/biom11050752] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
The available magnetic field strength for high resolution NMR in persistent superconducting magnets has recently improved from 23.5 to 28 Tesla, increasing the proton resonance frequency from 1 to 1.2 GHz. For magic-angle spinning (MAS) NMR, this is expected to improve resolution, provided the sample preparation results in homogeneous broadening. We compare two-dimensional (2D) proton detected MAS NMR spectra of four membrane proteins at 950 and 1200 MHz. We find a consistent improvement in resolution that scales superlinearly with the increase in magnetic field for three of the four examples. In 3D and 4D spectra, which are now routinely acquired, this improvement indicates the ability to resolve at least 2 and 2.5 times as many signals, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Loren B. Andreas
- Department for NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany; (E.N.); (K.T.M.); (X.C.Z.); (M.C.F.); (E.N.); (K.X.); (R.D.); (K.G.); (C.G.); (S.B.)
| |
Collapse
|
9
|
Siemer AB. Advances in studying protein disorder with solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 106:101643. [PMID: 31972419 PMCID: PMC7202078 DOI: 10.1016/j.ssnmr.2020.101643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/26/2023]
Abstract
Solution NMR is a key tool to study intrinsically disordered proteins (IDPs), whose importance for biological function is widely accepted. However, disordered proteins are not limited to solution and are also found in non-soluble systems such as fibrils and membrane proteins. In this Trends article, I will discuss how solid-state NMR can be used to study disorder in non-soluble proteins. Techniques based on dipolar couplings can study static protein disorder which either occurs naturally as e.g. in spider silk or can be induced by freeze trapping IDPs or unfolded proteins. In this case, structural ensembles are directly reflected by a static distribution of dihedral angels that can be determined by the distribution of chemical shifts or other methods. Techniques based on J-couplings can detect dynamic protein disorder under MAS. In this case, only average chemical shifts are measured but disorder can be characterized with a variety of data including secondary chemical shifts, relaxation rates, paramagnetic relaxation enhancements, or residual dipolar couplings. I describe both technical aspects and examples of solid-state NMR on protein disorder and end the article with a discussion of challenges and opportunities of this emerging field.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Univeristy of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| |
Collapse
|
10
|
Malär AA, Smith-Penzel S, Camenisch GM, Wiegand T, Samoson A, Böckmann A, Ernst M, Meier BH. Quantifying proton NMR coherent linewidth in proteins under fast MAS conditions: a second moment approach. Phys Chem Chem Phys 2019; 21:18850-18865. [PMID: 31432055 DOI: 10.1039/c9cp03414e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proton detected solid-state NMR under fast magic-angle-spinning (MAS) conditions is currently redefining the applications of solid-state NMR, in particular in structural biology. Understanding the contributions to the spectral linewidth is thereby of paramount importance. When disregarding the sample-dependent inhomogeneous contributions, the NMR proton linewidth is defined by homogeneous broadening, which has incoherent and coherent contributions. Understanding and disentangling these different contributions in multi-spin systems like proteins is still an open issue. The coherent contribution is mainly caused by the dipolar interaction under MAS and is determined by the molecular structure and the proton chemical shifts. Numerical simulation approaches based on numerically exact direct integration of the Liouville-von Neumann equation can give valuable information about the lineshape, but are limited to small spin systems (<12 spins). We present an alternative simulation method for the coherent contributions based on the rapid and partially analytic calculation of the second moments of large spin systems. We first validate the method on a simple system by predicting the 19F linewidth in CaF2 under MAS. We compare simulation results to experimental data for microcrystalline ubiquitin (deuterated 100% back-exchanged at 110 kHz and fully-protonated at 125 kHz). Our results quantitatively explain the observed linewidth per-residue basis for the vast majority of residues.
Collapse
Affiliation(s)
- Alexander A Malär
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Susanne Smith-Penzel
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Gian-Marco Camenisch
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Thomas Wiegand
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Ago Samoson
- School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia. and NMR Institute MTÜ, Tallinn, Estonia
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France.
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
11
|
Wang S, Fogeron ML, Schledorn M, Dujardin M, Penzel S, Burdette D, Berke JM, Nassal M, Lecoq L, Meier BH, Böckmann A. Combining Cell-Free Protein Synthesis and NMR Into a Tool to Study Capsid Assembly Modulation. Front Mol Biosci 2019; 6:67. [PMID: 31440516 PMCID: PMC6694763 DOI: 10.3389/fmolb.2019.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Modulation of capsid assembly by small molecules has become a central concept in the fight against viral infection. Proper capsid assembly is crucial to form the high molecular weight structures that protect the viral genome and that, often in concert with the envelope, allow for cell entry and fusion. Atomic details underlying assembly modulation are generally studied using preassembled protein complexes, while the activity of assembly modulators during assembly remains largely open and poorly understood, as necessary tools are lacking. We here use the full-length hepatitis B virus (HBV) capsid protein (Cp183) as a model to present a combination of cell-free protein synthesis and solid-state NMR as an approach which shall open the possibility to produce and analyze the formation of higher-order complexes directly on exit from the ribosome. We demonstrate that assembled capsids can be synthesized in amounts sufficient for structural studies, and show that addition of assembly modulators to the cell-free reaction produces objects similar to those obtained by addition of the compounds to preformed Cp183 capsids. These results establish the cell-free system as a tool for the study of capsid assembly modulation directly after synthesis by the ribosome, and they open the perspective of assessing the impact of natural or synthetic compounds, or even enzymes that perform post-translational modifications, on capsids structures.
Collapse
Affiliation(s)
- Shishan Wang
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | - Marie Dujardin
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | | | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
12
|
Lecoq L, Schledorn M, Wang S, Smith-Penzel S, Malär AA, Callon M, Nassal M, Meier BH, Böckmann A. 100 kHz MAS Proton-Detected NMR Spectroscopy of Hepatitis B Virus Capsids. Front Mol Biosci 2019; 6:58. [PMID: 31396521 PMCID: PMC6668038 DOI: 10.3389/fmolb.2019.00058] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
We sequentially assigned the fully-protonated capsids made from core proteins of the Hepatitis B virus using proton detection at 100 kHz magic-angle spinning (MAS) in 0.7 mm rotors and compare sensitivity and assignment completeness to previously obtained assignments using carbon-detection techniques in 3.2 mm rotors and 17.5 kHz MAS. We show that proton detection shows a global gain of a factor ~50 in mass sensitivity, but that signal-to-noise ratios and completeness of the assignment was somewhat higher for carbon-detected experiments for comparable experimental times. We also show that deuteration and HN back protonation improves the proton linewidth at 100 kHz MAS by a factor of 1.5, from an average of 170-110 Hz, and by a factor of 1.3 compared to deuterated capsids at 60 kHz MAS in a 1.3 mm rotor. Yet, several HN protons cannot be back-exchanged due to solvent inaccessibility, which results in a total of 15% of the amides missing in the spectra.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | - Shishan Wang
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | | | | | - Michael Nassal
- Department of Medicine II/Molecular Biology, Medical Center, University Hospital Freiburg, University of Freiburg, Freiburg, Germany
| | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
13
|
Xue K, Mühlbauer M, Mamone S, Sarkar R, Reif B. Accurate Determination of
1
H‐
15
N Dipolar Couplings Using Inaccurate Settings of the Magic Angle in Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Xue
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und Umwelt Ingolstädter Landstr. 1 85764 Neuherberg Germany
| | - Max Mühlbauer
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und Umwelt Ingolstädter Landstr. 1 85764 Neuherberg Germany
| | - Salvatore Mamone
- Max Planck Institute for Biophysical Chemistry Göttingen Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und Umwelt Ingolstädter Landstr. 1 85764 Neuherberg Germany
- Munich Center for Integrated Protein Science (CIPS-M), Department ChemieTechnische Universität München (TUM) Lichtenbergstr. 4 85747 Garching Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und Umwelt Ingolstädter Landstr. 1 85764 Neuherberg Germany
- Munich Center for Integrated Protein Science (CIPS-M), Department ChemieTechnische Universität München (TUM) Lichtenbergstr. 4 85747 Garching Germany
| |
Collapse
|
14
|
Xue K, Mühlbauer M, Mamone S, Sarkar R, Reif B. Accurate Determination of 1 H- 15 N Dipolar Couplings Using Inaccurate Settings of the Magic Angle in Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2019; 58:4286-4290. [PMID: 30694593 DOI: 10.1002/anie.201814314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 11/10/2022]
Abstract
Magic-angle spinning (MAS) is an essential ingredient in a wide variety of solid-state NMR experiments. The standard procedures to adjust the rotor angle are not highly accurate, resulting in a slight misadjustment of the rotor from the magic angle ( θ R L = tan - 1 2 ) on the order of a few millidegrees. This small missetting has no significant impact on the overall spectral resolution, but is sufficient to reintroduce anisotropic interactions. Shown here is that site-specific 1 H-15 N dipolar couplings can be accurately measured in a heavily deuterated protein. This method can be applied at arbitrarily high MAS frequencies, since neither rotor synchronization nor particularly high radiofrequency field strengths are required. The off-MAS method allows the quantification of order parameters for very dynamic residues, which often escape an analysis using existing methods.
Collapse
Affiliation(s)
- Kai Xue
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Max Mühlbauer
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Salvatore Mamone
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Munich Center for Integrated Protein Science (CIPS-M), Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Munich Center for Integrated Protein Science (CIPS-M), Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
15
|
Penzel S, Oss A, Org ML, Samoson A, Böckmann A, Ernst M, Meier BH. Spinning faster: protein NMR at MAS frequencies up to 126 kHz. JOURNAL OF BIOMOLECULAR NMR 2019; 73:19-29. [PMID: 30680507 PMCID: PMC6441448 DOI: 10.1007/s10858-018-0219-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/05/2018] [Indexed: 05/05/2023]
Abstract
We report linewidth and proton T1, T1ρ and T2' relaxation data of the model protein ubiquitin acquired at MAS frequencies up to 126 kHz. We find a predominantly linear improvement in linewidths and coherence decay times of protons with increasing spinning frequency in the range from 93 to 126 kHz. We further attempt to gain insight into the different contributions to the linewidth at fast MAS using site-specific analysis of proton relaxation parameters and present bulk relaxation times as a function of the MAS frequency. For microcrystalline fully-protonated ubiquitin, inhomogeneous contributions are only a minor part of the proton linewidth, and at 126 kHz MAS coherent effects are still dominating. We furthermore present site-specific proton relaxation rate constants during a spinlock at 126 kHz MAS, as well as MAS-dependent bulk T1ρ (1HN).
Collapse
Affiliation(s)
- Susanne Penzel
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Andres Oss
- NMR Instituut, Tartu Teaduspark, Tehnomeedikum, Tallinn University of Technology, Akadeemia tee 15a, 19086, Tallinn, Estonia
| | - Mai-Liis Org
- NMR Instituut, Tartu Teaduspark, Tehnomeedikum, Tallinn University of Technology, Akadeemia tee 15a, 19086, Tallinn, Estonia
| | - Ago Samoson
- NMR Instituut, Tartu Teaduspark, Tehnomeedikum, Tallinn University of Technology, Akadeemia tee 15a, 19086, Tallinn, Estonia.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/Université de Lyon 1, Labex ECOFECT, 7, Passage du Vercors, 69367, Lyon, France.
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
16
|
Carnahan SL, Lampkin BJ, Naik P, Hanrahan MP, Slowing II, VanVeller B, Wu G, Rossini AJ. Probing O–H Bonding through Proton Detected 1H–17O Double Resonance Solid-State NMR Spectroscopy. J Am Chem Soc 2018; 141:441-450. [DOI: 10.1021/jacs.8b10878] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Scott L. Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Bryan J. Lampkin
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Pranjali Naik
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Michael P. Hanrahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Igor I. Slowing
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Gang Wu
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Aaron J. Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|