1
|
Wang Y, Liu T, Peng B, Yu P, Yang X, Xu Y. Research of integrated shimming Halbach magnet for High strength, compact Benchtop NMR device. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107559. [PMID: 37776830 DOI: 10.1016/j.jmr.2023.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Due to production and assembly errors of magnets resulting in reduced magnetic field homogeneity, passive shimming (PS) is necessary when Halbach magnets are used in high-resolution Benchtop Nuclear Magnetic Resonance (BNMR) spectrometer. The conventional PS technique, which places independent PS devices inside the magnet aperture, is no longer applicable to small-aperture compact high-field-strength Halbach magnet studies. In this paper, based on spherical harmonic function expansion, we improve the magnetic field homogeneity by optimizing the moving step of the magnet moving arrays composed of Halbach magnets to generate the corresponding harmonic terms to compensate for the magnetic field. With this approach, the homogeneity of a 1 T Halbach magnet was improved from the original 3913 ppm to 8 ppm in a L10 mm × R2.5 mm of 0.64% copper sulfate doped water sample. This work explores the PS mechanism based on the movement of magnetic blocks, which can be applied in BNMR and other compact high-field strength high-homogeneity Halbach magnets application circumstances.
Collapse
Affiliation(s)
- Ya Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Tingwei Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China; School of Electronic and Information Engineering, Changchun University of Science and Technology, 130022 Changchun, China
| | - Bowen Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Peng Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| | - Yajie Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| |
Collapse
|
2
|
Dreyer F, Yang Q, Alnajjar B, Kruger D, Blumich B, Anders J. A Portable Chip-Based NMR Relaxometry System With Arbitrary Phase Control for Point-of-Care Blood Analysis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:831-842. [PMID: 37335792 DOI: 10.1109/tbcas.2023.3287281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
In this article, we present a portable NMR relaxometry system optimized for the point-of-care analysis of body liquids such as blood. The presented system is centered on an NMR-on-a-chip transceiver ASIC, a reference frequency generator with arbitrary phase control, and a custom-designed miniaturized NMR magnet with a field strength of 0.29 T and a total weight of 330 g. The NMR-ASIC co-integrates a low-IF receiver, a power amplifier, and a PLL-based frequency synthesizer on a total chip area of 1100 × 900 μm 2. The arbitrary reference frequency generator enables the use of conventional CPMG and inversion sequences, as well as modified water-suppression sequences. Moreover, it is used to implement an automatic frequency lock to correct temperature-induced magnetic field drifts. Proof-of-concept measurements on NMR phantoms and human blood samples show an excellent concentration sensitivity of v[Formula: see text] = 2.2 mM/[Formula: see text]. This very good performance renders the presented system an ideal candidate for the future NMR-based point-of-care detection of biomarkers such as the blood glucose concentration.
Collapse
|
3
|
Bogaychuk A, Kuzmin V. Accounting for material imperfections in the design and optimization of low cost Halbach magnets. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:103904. [PMID: 33138559 DOI: 10.1063/5.0013274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate an experimental method for the improvement of the magnetic field homogeneity in Halbach magnets by taking magnet material imperfection into account. This method relies on the determination of the magnetization magnitude only for individual magnet blocks based on nuclear magnetic resonance field measurements in a simplified system, which, in our case, consists of four blocks. Then, a set of configurations with highest homogeneities can be found from simplified field map simulations of all possible configurations or by applying sophisticated optimum search algorithms if the number of blocks is large. Finally, the residual effect of angular magnetization deviations can be reduced by the experimental selection of the best configuration from the set found on the simulation step. This selection strategy is based on the conclusions made from statistical analysis of simulated field maps. By applying the described method to our eight-element magnet, we experimentally achieved tenfold field homogeneity improvement. Thus, in the best configuration, we obtained an average value of the magnetic field of 598.0 mT and a half-width of 226.9 ppm for a sample with a diameter of 4 mm and a height of 10 mm. These parameters along with the compact magnet size (40 × 40 × 102 mm3) and weight (0.6 kg) provide reasonable magnet quality compared with analogous systems having more complex magnet arrangements and significantly higher costs.
Collapse
Affiliation(s)
- A Bogaychuk
- Institute of Physics, Kazan Federal University, Kremlyovskaya Str. 18, Kazan 420008, Russia
| | - V Kuzmin
- Institute of Physics, Kazan Federal University, Kremlyovskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
4
|
Keller TJ, Laut AJ, Sirigiri J, Maly T. High-resolution Overhauser dynamic nuclear polarization enhanced proton NMR spectroscopy at low magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106719. [PMID: 32217425 PMCID: PMC7172445 DOI: 10.1016/j.jmr.2020.106719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 05/11/2023]
Abstract
Dynamic nuclear polarization (DNP) has gained large interest due to its ability to increase signal intensities in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. Currently, DNP is typically used to enhance high-field, solid-state NMR experiments. However, the method is also capable of dramatically increasing the observed signal intensities in solution-state NMR spectroscopy. In this work, we demonstrate the application of Overhauser dynamic nuclear polarization (ODNP) spectroscopy at an NMR frequency of 14.5 MHz (0.35 T) to observe DNP-enhanced high-resolution NMR spectra of small molecules in solutions. Using a compact hybrid magnet with integrated shim coils to improve the magnetic field homogeneity we are able to routinely obtain proton linewidths of less than 4 Hz and enhancement factors >30. The excellent field resolution allows us to perform chemical-shift resolved ODNP experiments on ethyl crotonate to observe proton J-coupling. Furthermore, recording high-resolution ODNP-enhanced NMR spectra of ethylene glycol allows us to characterize the microwave induced sample heating in-situ, by measuring the separation of the OH and CH2 proton peaks.
Collapse
Affiliation(s)
| | | | | | - Thorsten Maly
- Bridge12 Technologies, 37 Loring Drive, Framingham, MA 01702, USA
| |
Collapse
|
5
|
O'Reilly T, Teeuwisse WM, Webb AG. Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106578. [PMID: 31470234 DOI: 10.1016/j.jmr.2019.106578] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Modern clinical MRI systems utilise very high magnetic fields strengths to produce high resolution images of the human body. The high up-front and maintenance cost of these systems means that much of the world lacks access to this technology. In this paper we propose a low cost, head-only, homogenous Halbach magnet array with the potential for paediatric neuroimaging in low-resource settings. The homogeneity of the Halbach array is improved by allowing the diameter of the Halbach array to vary along its length, and also adding smaller internal shim magnets. The constructed magnet has a bore diameter of 27 cm, mean B0 field strength of 50.4 mT and a homogeneity of 2400 ppm over a 20 cm diameter spherical volume. The level of homogeneity of the system means that coil-based gradients can be used for spatial encoding which greatly increases the flexibility in image acquisition. 3D images of a "brain phantom" were acquired over a 22 × 22 × 22 cm field of view with a 3.5 mm isotropic resolution using a spin-echo sequence. Future development of a low-cost gradient amplifier and an open-source spectrometer has the potential of offering a fully open-source, low-cost MRI system for paediatric neuroimaging in low-resource settings.
Collapse
Affiliation(s)
- T O'Reilly
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - W M Teeuwisse
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - A G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Blümich B. Low-field and benchtop NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:27-35. [PMID: 31311709 DOI: 10.1016/j.jmr.2019.07.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 05/28/2023]
Abstract
NMR started at low field. Important discoveries like the first observation of NMR in condensed matter, the spin echo, NMR for chemical analysis, Fourier NMR spectroscopy, 2D NMR spectroscopy and magnetic resonance imaging happened at field strengths considered low today. With time the footprint of the NMR instruments at these field strengths shrunk from the laboratory floor to the tabletop. The first commercial tabletop NMR instruments were compact relaxometers for food analysis followed by mobile relaxometers for materials testing and oil-well exploration culminating in tabletop spectrometers for chemical analysis, capable of performing nearly the whole methodical portfolio of today's high-field instruments. The increasing sensitivity afforded by the lower noise of modern electronics and the unfolding richness of hyperpolarization scenarios along with detection schemes alternative to nuclear induction enable NMR at ultra-low field strengths down to zero applied field, where spin-spin couplings in local fields dominate the residual Zeeman interaction. Miniaturization and cost-reduction of NMR instruments outline current development goals along with the development of smart-phone-like apps to conduct standard NMR analyses.
Collapse
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Überrück T, Blümich B. Variable magnet arrays to passively shim compact permanent-yoke magnets. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:77-84. [PMID: 30529894 DOI: 10.1016/j.jmr.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 05/03/2023]
Abstract
C-shaped permanent magnets offer a compromise between sample accessability and field strength as well as homogeneity compared to single-sided devices or Halbach arrays. A new approach to passively shim C-shaped dipole magnets is presented. It relies on the magnet poles being constructed from a set of adjustable magnet elements. Two pole concepts are introduced, which allow the correction of the field profile and passively shim the magnet without the need of additional pole shoes or shim pieces.
Collapse
Affiliation(s)
- Till Überrück
- RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
| | - Bernhard Blümich
- RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany.
| |
Collapse
|